Advertisement

Abstract

A glycosan is a general term for a macromolecular substance which is hydrolyzed to yield almost exclusively sugars. When the hydrolysis yields only one component sugar the glycosan is designated a homoglycosan, but when two or more component sugars are formed the substance is called a heteroglycosan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adams, M., N. K. Richtmyer and C. S. Hudson: Some enzymes present in highly purified invertase preparation. A contribution to the study of fructofuranosidases, galactosidases, glucosidases and mannosidases. J. Amer. Chem. Soc. 65, 1369–1380 (1943).CrossRefGoogle Scholar
  2. Anderson, E.: Endosperm mucilages of legumes. Industr. Engng. Chem. 41, 2887–2890 (1949).CrossRefGoogle Scholar
  3. Andrews, P., L. Hough and J. K. N. Jones: [1] Mannose-containing polysaccharides. Part I. The galactomannans of lucerne and clover seeds. J. Amer. Chem. Soc. 74, 4029–4032 (1952).CrossRefGoogle Scholar
  4. [2] Mannose-containing polysaccharides. Part II. The galactomannan of fenugreek seed (Trigonella fœnum-grœcum). J. Chem. Soc. (Lond.) 1952, 2744–2750.Google Scholar
  5. Mannose-containing polysaccharides. Part III. The polysaccharides of Iris ochroleuca and Iris sibirica. J. Chem. Soc. (Lond.) 1953, 1186–1192.Google Scholar
  6. The galactan of Strychnos nux-vomica seeds. J. Chem. Soc. (Lond.) 1954, 806–810.Google Scholar
  7. Anthis, A. F.: Some carbohydrate linkages in slash pine α-cellulose. Abstracts of Papers. 128th Meeting, American Chem. Soc, Minneapolis, Minn. Sept. 11–16, 1955.Google Scholar
  8. Archbold, H. K.: Fructosans in the monocotyledons. A review. New Phytologist 39, 185–219 (1940).CrossRefGoogle Scholar
  9. Arni, P. C., and E. G. V. Percival: Studies on fructosans. Part II. Triticin from the rhizomes of couch grass (Triticum repens). J. Chem. Soc. (Lond.) 1951, 1822–1830.Google Scholar
  10. Aspinall, G. O.: The methyl ethers of hexuronic acids. Adv. Carbohydrate Chem. 9, 131–148 (1954).CrossRefGoogle Scholar
  11. Aspinall, G. O., E. L. Hirst and R. S. Mahomed: Hemicellulose A of beechwood (Fagus sylvatica). J. Chem. Soc. (Lond.) 1954, 1734–1738.Google Scholar
  12. Aspinall, G. O., E. L. Hirst, R. W. Moody and E.G.V. Percival: The hemicelluloses of esparto grass (Stipa tenacissima L.). The arabinose-rich fraction. J. Chem. Soc. (Lond.) 1953, 1631–1634.Google Scholar
  13. Aspinall, G. O., E. L. Hirst, E. G. V. Percival and I. R. Williamson: The mannans of ivory nut (Phytelephas macrocarpa). Part I. The methylation of mannan A and mannan B. J. Chem. Soc. (Lond.) 1953, 3184–3188.Google Scholar
  14. Aspinall, G. O., and R. S.Mahomed: The constitution of a wheat-straw xylan. J. Chem. Soc. (Lond.) 1954, 1731–1734.Google Scholar
  15. Aspinall, G. O., and R. G. J. Telfer: Cereal gums. Part I. The methylation of barley glucosans. J. Chem. Soc. (Lond.) 1954, 3519–3522.Google Scholar
  16. Bacon, J. S. D.: The oligosaccharides produced by the action of yeast invertase preparations on sucrose. Biochemic. J. 57, 320–328 (1954).Google Scholar
  17. Bacon, J. S. D., and J. Edelman: The action of invertase preparations. Arch. of Biochem. 28, 467–468 (1950).Google Scholar
  18. Bacon, J. S. D., and R. Loxley: Seasonal changes in the carbohydrates of the Jerusalem artichoke tuber. Biochemic. J. 51, 208–215 (1952).Google Scholar
  19. Barker, S.A., and E. J. Bourne: Enzymic synthesis of polysaccharides. Quart. Rev. (Lond.) 7, 56–83 (1953).CrossRefGoogle Scholar
  20. Bealing, F. J., and J. S. D. Bacon: Sucrose breakdown by enzyme preparations from moulds. Biochemic. J. 49, lxxv (1951).Google Scholar
  21. Bell, D. J., and A. Palmer: Structural studies on inulin from Inula helenium, and on levans from Dactylis glomerata and Lolium italicum. J. Chem. Soc. (Lond.) 1952, 3763–3770.Google Scholar
  22. Blanchard, P. H., and N. Albon: The inversion of sucrose; a complication. Arch. of Biochem. 29, 220–222 (1950).Google Scholar
  23. Borgin, G. L.: Molecular properties of water-soluble polysaccharides from Western larch. J. Amer. Chem. Soc. 71, 2247–2248 (1949).CrossRefGoogle Scholar
  24. Campbell, W. G., E. L. Hirst and J. K. N. Jones: The ε-galactan of larch wood (Larix decidua). J. Chem. Soc. (Lond.) 1948, 774–777.Google Scholar
  25. Chanda, S. K., E. L. Hirst, J. K. N. Jones and E. G. V. Percival: The constitution of xylan from esparto grass (Stipa tenacissima L.). J. Chem. Soc. (Lond.) 1950, 1289–1297.Google Scholar
  26. Chanda, S. K., E. L. Hirst and E. G. V. Percival: The constitution of a pear cell-wall xylan. J. Chem. Soc. (Lond.) 1951, 1240–1246.Google Scholar
  27. Colin, H., et H. Belval: Les fructosans et leur identification. Bull. Soc. bot. France 87, 341–344 (1940).Google Scholar
  28. Dedonder, R.: Les glucides du topinambour. IV. Isolement, analyse et structure des premiers termes de la série des polyosides. C. r. Acad. Sci. Paris 232, 1134–1136 (1951).Google Scholar
  29. Les glucides du topinambour. II. Contribution a l’étude des glucides du topinambour par la méthode des hydrolyses ménagées. Bull. Soc. Chim. biol. Paris 34, 157–170 (1952).Google Scholar
  30. Deuel, H., H. Neukom and F. Weber: Reaction of boric acid with polysaccharides. Nature (Lond.) 161, 96–97 (1948).CrossRefGoogle Scholar
  31. Edelman, J., and J. S. D. Bacon: The action of a hydrolytic enzyme system from Helianthus tuberosus L. on the carbohydrates present in the tubers. Biochemic. J. 49, 446–453 (1951).Google Scholar
  32. Ehrenthal, I., R. Montgomery and F. Smith: The carbohydrates of Gramineae. II. The constitution of the hemicellulose of wheat straw and corn cobs. J. Amer. Chem. Soc. 76, 5509–5514 (1954).CrossRefGoogle Scholar
  33. Gaponenkov, T. K.: The molecular weight of araban. J. Gen. Chem. 7, 1729–1732 (1937). Ref. Chem. Abstr. 31, 8307 (1937).Google Scholar
  34. Gorrod, A. R. N., and J. K. N. Jones: The hemicelluloses of scots pine (Pinuss ylvestris) and black spruce (Picea nigra) woods. J. Chem. Soc. (Lond.) 1954, 2522–2525.Google Scholar
  35. Hamilton, J., K. H. W. Kircher and N. S.Thompson: The nature of hemicelluloses associated with wood cellulose from Western hemlock (Tsuga heterophylla). Abstracts of Papers. 128th Meeting, American Chem. Soc, Minneapolis, Minn. Sept. 11–16, 1955.Google Scholar
  36. Harwood, V. D., R. A. Laidlaw and R. G. J. Telfer: Studies on fructosans. Part V. Short-chain fructosans from Lolium perenne. J. Chem. Soc. (Lond.) 1954, 2364–2368.Google Scholar
  37. Heyne, E., and R. L. Whistler: Chemical composition and properties of guar polysaccharides. J. Amer. Chem. Soc. 70, 2249–2252 (1948).CrossRefGoogle Scholar
  38. Hirst, E. L., and J. K. N. Jones: Pectic substances. Part II. Isolation of an araban from the carbohydrate constituents of the pea nut. J. Chem. Soc. (Lond.) 1939, 452–453.Google Scholar
  39. Chemistry of pectic materials. Adv. Carbohydrate Chem. 2, 235–251 (1946).Google Scholar
  40. Pectic substances. Part VI. The structure of the araban from Arachis hypogaea. J. Chem. Soc. (Lond.) 1947, 1221–1225.Google Scholar
  41. [1] Pectic substances. Part VIII. The araban component of sugar-beet pectin. J. Chem. Soc. (Lond.) 1948, 2311–2313.Google Scholar
  42. [2] The galactomannan of carob-seed gum. (Gum gatto). J. Chem. Soc. (Lond.) 1948, 1278–1282.Google Scholar
  43. Hirst, E. L., J. K. N. Jones and W. O. Walder: [1] Pectic substances. VII. The constitution of the galactan from Lupinus albus. J. Chem. Soc. (Lond.) 1947, 1225–1229.Google Scholar
  44. [2] The galactomannans of the lucerne seed. J. Chem. Soc. (Lond.) 1947, 1443–1446.Google Scholar
  45. Hirst, E. L., D. I. Mc Ilvray and E. G. V. Percival: Studies on fructosans. Part I. Inulin from Dahlia tubers. J. Chem. Soc. (Lond.) 1950, 1297–1302.Google Scholar
  46. Holden. M., and M. V. Tracey: A study of enzymes that can break down tobacco-leaf components. 2. Digestive juice of Helix on defined substrates. Biochemic. J. 47, 407–414 (1950).Google Scholar
  47. Husemann, E.: Über die Konstitution von Salepmannan. 246. Mitteilung über makromolekulare Verbindungen. J. prakt. Chem. 155, 241–260 (1940).CrossRefGoogle Scholar
  48. Ishimatsu, K., and Y. Kibesaki: Mannase of the agar-agar splitting bacteria. I. Detection of mannase. Symposia Enzyme Chem. 4, 75–76 (1950). Ref. Chem. Abstr. 46, 2124 (1952).Google Scholar
  49. Jones, J. K. N.: Larch ε-galactan. Part II. The isolation of 3-β-l-arabopyranosvl-l-arabinose. J. Chem. Soc. (Lond.) 1953, 1672–1675.Google Scholar
  50. Karrer, P., u. M. Staub: Polysaccharide. XXVII. Zur Kenntnis der Lichenase. Helvet. chim. Acta 7, 916–928 (1924).CrossRefGoogle Scholar
  51. Klages, F.: Zur Kenntnis der Steinnuß-mannane. I. Die Konstitution von Mannan A. Liebigs Ann. 509, 159–181 (1934).Google Scholar
  52. Die Konstitution von Mannan B. Liebigs Ann. 512, 185–194 (1934).Google Scholar
  53. Larson, E. B., and F. Smith: The constitution of the galactomannan of the seeds of the Kentucky coffee bean (Gymnocladus dioica). J. Amer. Chem. Soc. 77, 429–432 (1955).CrossRefGoogle Scholar
  54. Legrand, G., et C. Lewis: Existence d’une fructosanase distincte de la saccharase dans les extraits de levure de boulangerie. C. r. Acad. Sci. Paris 232, 1439–1441 (1951).Google Scholar
  55. Low. W., and E. V. White: A study of polysaccharide hydroxylation using p-toluene sulfonyl chloride and triphenyl chloromethane. J. Amer. Chem. Soc. 65, 2430–2432 (1943).CrossRefGoogle Scholar
  56. Manners, D. J.: Enzymic degradation of polysaccharides. Quart. Rev. (Lond.) 9, 73–99 (1955).CrossRefGoogle Scholar
  57. Mc Donald, E. J.: The polyfructosans and difructose anhydrides. Adv. Carbohydrate Chem. 2, 253–277 (1946).CrossRefGoogle Scholar
  58. Mc Ilroy, R. J., G. S. Holmes and R. P. Mauger: The hemicelluloses of Phormium tenax (N. Z. flax). Part II. The constitution of the aldotrionic acid. J. Chem. Soc. Lond.() 1949, 121–124.Google Scholar
  59. Mosimann, H., u. T. Svedberg: Sedimentations- und Diffusionsmessungen am wasserlöslichen Polysaccharid aus Lärchenholz. Kolloid-Z. 100, 99–105 (1942).CrossRefGoogle Scholar
  60. Nishida, K., u. H. Hashima: Chemische Untersuchungen über das Glukomannan aus „Konjak“. J. Dept. Agricult. Kyushu 2, 277–360 (1930). Ref. Chem. Abstr. 25, 498 (1931).Google Scholar
  61. Ohtsuki, T.: Studien über „Cremastramannan“, das Mannan des japanischen Saleps. Acta phytochim. (Tokyo) 10, 1–28 (1937).Google Scholar
  62. Untersuchungen über das „Bletillamannan“, ein Mannan aus den Knollen von Bletilla striata. Acta phytochim. (Tokyo) 10, 29–41 (1937).Google Scholar
  63. Ozawa, J.: Fermentation of pectins. XIV. Polyases of plant pathogenic microorganisms. Rept. Ohara Inst. Agricult. Res. 40, 110–112 (1952). Ref. Chem. Abstr. 47, 10070 (1953).Google Scholar
  64. Ozawa, J., and K. Okamoto: Fermentation of pectins. XII. Distribution of pectinase in higher plants. Rept. Ohara Inst. Agricult. Res. 40, 103–106 (1952). Ref. Chem. Abstr. 47, 10070 (1950).Google Scholar
  65. Palmer, J. K., and M. Ballantyne: The structure of I some pectin esters and II guar galactomannan. J. Amer. Chem. Soc. 72, 736–741 (1950).CrossRefGoogle Scholar
  66. Pazur, J. H., and A. L. Gordon: Studies on inulin. The preparation and properties of inulobiose. J. Amer. Chem. Soc. 75, 3458–3460 (1953).CrossRefGoogle Scholar
  67. Percival, E. G. V., and S. K. Chanda: The xylan of Rhodymenia palmata. Nature (Lond.) 166, 787–788 (1950).CrossRefGoogle Scholar
  68. Perlin, A. S.: Structure of the soluble pentosans of wheat flour. Cereal Chem. 28, 382–393 (1951).Google Scholar
  69. Pigman, W. W.: Cellulases, hemicellulases and related enzymes. In: J. B. Sumner and K. Myrbäck: The Enzymes, vol. I, p. 725–744. New York: Academic Press 1951.Google Scholar
  70. Preece, I. A., and A. M. Mc Leod: The minor carbohydrate constituents of barlev. Wallerstein Labor. Commun. 16, 149–158 (1953).Google Scholar
  71. Rebers, P. A., and F. Smith: The constitution of Iles mannan. J. Amer. Chem. Soc. 76, 6097–6102 (1954).CrossRefGoogle Scholar
  72. Reid, W. W.: Pectic enzymes of the fungus Byssochlamys fulva. Biochemic. J. 50, 289–292 (1952).Google Scholar
  73. Roudier, A., et L. Eberhard: La présence des mannanes dans le bois des arbres appartenant au sous-embranchement des angiospermes. C. r. Acad. Sci. Paris 235, 207–209 (1952).Google Scholar
  74. Saarnio, J., K. Wathén and C. Gustafsson: Structure of an acidic xylan isolated from birch wood holocellulose. Acta chem. scand. (Copenh.) 8, 825–828 (1954).CrossRefGoogle Scholar
  75. Schlubach, H. H., u. L. Gassmann: Untersuchungen über Polyfructosane. XXXVI. Über das Avenarin F. Liebigs Ann. 587, 103–106 (1954).Google Scholar
  76. Schlubach, H. H., u. K. Holzer: Untersuchungen über Polyfructosane. XXXVIII. Über den Kohlenhydratstoffwechsel in Lolium perenne. Liebigs Ann. 587, 111–124 (1954).CrossRefGoogle Scholar
  77. Schlubach, H. H., u. H. Müller: Untersuchungen über Polyfructosane. XXVII. Über das Avenarin. Liebigs Ann. 572, 106–114 (1951).CrossRefGoogle Scholar
  78. Untersuchungen über Polyfructosane. XXIX. Über das Sitosin. Liebigs Ann. 587, 194–198 (1952).Google Scholar
  79. Smith, F.: The constitution of carob gum. J. Amer. Chem. Soc. 70, 3249–3253 (1948).CrossRefGoogle Scholar
  80. Sørensen, H.: On the specificity and products of action of xylanase from Chaetomium globosum Kunze. Physiol. Plantarum (Copenh.) 5, 183–198 (1952).CrossRefGoogle Scholar
  81. Enzymatic hydrolysis of xylan. Nature (Lond.) 172, 305–306 (1953).Google Scholar
  82. Speiser, R., C. R. Eddy and C. H. Hills: Kinetics of deesterification of pectin. J. Chem. Physics 49, 563–579 (1945).CrossRefGoogle Scholar
  83. Wadman, W. H., A. B. Anderson and W. Z. Hassid: The structure of an arabogalactan from Jeffrey pine (Pinus Jeffreyi). J. Amer. Chem. Soc. 76, 4097–4100 (1954).CrossRefGoogle Scholar
  84. Whistler, R. L.: Xylan. Adv. Carbohydrate Chem. 5, 269–290 (1950).CrossRefGoogle Scholar
  85. Whistler, R. L., H. E. Conrad and L. Hough: 2-O-(4-O-Methyl-α-d-glucopyranosyluronic acid)-d-xylose from hemicellulose B of corn cob. J. Amer. Chem. Soc. 76, 1668–1670 (1954).CrossRefGoogle Scholar
  86. Whistler, R. L., and D. F. Durso: The isolation and characterization of two crystalline disaccharides from partial acid hydrolysis of guaran. J. Amer. Chem. Soc. 73, 4189–4190 (1951).CrossRefGoogle Scholar
  87. A new trisaccharide from partial acid hydrolysis of guaran and the structure of guaran. J. Amer. Chem. Soc. 74, 5140–5141 (1952).Google Scholar
  88. Whistler, R. L., W. H. Eoff and D. M. Doty: Enzymatic hydrolysis of guaran. J. Amer. Chem. Soc. 72, 4938–4939 (1950).CrossRefGoogle Scholar
  89. Whistler, R. L., and E. Masak jr.: Enzymatic hydrolysis of xylan. J. Amer. Chem. Soc. 77, 1241–1243 (1955).CrossRefGoogle Scholar
  90. Whistler, R. L., and C. L. Smart: Polysaccharide chemistry. New York: Academic Press 1953.Google Scholar
  91. Whistler, R. L., and C. G. Smith: A crystalline mannotriose from the enzymatic hydrolysis of guaran. J. Amer. Chem. Soc. 74, 3795–3796 (1952).CrossRefGoogle Scholar
  92. Whistler. R. L., and J. Z. Stein: A crystalline mannobiose from the enzymatic hvdrolysis of guaran. J. Amer. Chem. Soc. 73, 4187–4188 (1951).CrossRefGoogle Scholar
  93. Whistler, R. L., and C.-C. Tu: Isolation and properties of a series of crystalline oligosaccharides from xylan. J. Amer. Chem. Soc. 74, 3609–3612 (1952).CrossRefGoogle Scholar
  94. White, E. V.: The constitution of arabo-galactan. IV. The structure of the repeating unit. J. Amer. Chem. Soc. 64, 2838–2842 (1942).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Gunnar Neumüller

There are no affiliations available

Personalised recommendations