Salt losses and redistribution of salts in higher plants

  • Göran Stenlid
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 4)

Abstract

In a young developing plant the content of mineral constituents steadily increases both in the whole of the plant and in its different organs. The inorganic ions arriving at the young leaves are almost entirely incorporated into the growing tissues. In old leaves, to which minerals are still transported by the transpiration stream, the need is much less and the reexport is favoured. In the mature plant there is thus a redistribution and backward transport of the mineral elements (at least for some of them). For some easily mobile elements a decrease of the total amount contained in the plant may also begin. Redistribution and also losses of mineral elements are still more obvious in old senescent plants and in dying organs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Achromeiko, A. I.: Über die Ausscheidung mineralischer Stoffe durch Pflanzenwurzeln. Z. Pflanzenernährg, Düng. u. Bodenkde 42, 156–186 (1936).Google Scholar
  2. Alberda, T.: The influence of some external factors on growth and phosphate uptake of maize plants on different salt conditions. Rec. Trav. bot. néerl. 41, 541–601 (1949).Google Scholar
  3. Allison, F. E., and L. D. T. Sterling: Gaseous losses of nitrogen from green plants. II. Studies with excised leaves in nutrient media. Plant Physiol. 23, 601–608 (1948).PubMedGoogle Scholar
  4. Andel, O. M. van, W. H. Arisz and R. J. Helder: Influence of light and sugar on growth and salt uptake by maize. Proc. Kon. Ned. Akad. Wetensch. 53, 159–171 (1950).Google Scholar
  5. Arens, K.: Die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 80, 248–300 (1934).Google Scholar
  6. Arenz, B.: Über die Aufnahme und Verarbeitung von NO3-Nund NH3-N durch Gramineenkeimlinge. Bodenkde u. Pflanzenernährg 27, 330–352 (1942).Google Scholar
  7. Über die Aufnahme und Verarbeitung von NO3-N und NH3-N durch Leguminosenkeimlinge. Bodenkde u. Pflanzenernährg 27, 352–367 (1942).Google Scholar
  8. Arisz, W. H., I. J. Camphius, H. Heikens and A. J. van Tooren: The secretion of the salt glands of Limonium latifolium Ktze. Acta bot. neerl. 4, 321–338 (1955).Google Scholar
  9. Arnold, A.: Die Bedeutung der Chlorionen für die Pflanze, insbesondere deren physiologische Wirksamkeit. Eine monographische Studie mit Ausblicken auf das Halophytenproblem. Jena: Gustav Fischer 1955.Google Scholar
  10. Biddulph, O.: Diurnal migration of injected radiophosphorus from bean leaves. Amer. J. Bot. 28, 348–352 (1941).Google Scholar
  11. The translocation of minerals in plants. In E. Troug, Mineral nutrition of plants, p. 261–275. Madison, Wisconsin: Univ. Press 1951.Google Scholar
  12. The distribution of P, S, Ca, and Fe in bean plants as revealed by use of radioactive isotopes. In: Analyse des plantes et problèmes des engrais minéraux, p. 7–17. Paris: Inst. Rech. Huiles et Oléagneux 1954.Google Scholar
  13. Studies of mineral nutrition by use of tracers. Bot. Review 21, 251–295 (1955).Google Scholar
  14. Biddulph, O., R. Cory and S. Biddulph: The absorption and translocation of sulfur in red kidney bean. Plant Physiol. 31, 28–33 (1956).PubMedGoogle Scholar
  15. Bledsoe, R. W., C. L. Comar and H. C. Harris: Absorption of radioactive calcium by the peanut fruit. Science (Lancaster, Pa.) 109, 329–330 (1949).Google Scholar
  16. Boresch, K.: Bestandteile und Zusammensetzung des Pflanzenkörpers. 2. Die anorganischen Bestandteile. In: Handbuch der Pflanzenernährung und Düngelehre, Bd. 1, S. 180–284. 1931.Google Scholar
  17. Gehalt der Pflanzen an Mineralstoffen. Tabulae biologicae (Den Haag) 10, 315–353 (1935).Google Scholar
  18. Gehalt der Pflanzen an Mineralstoffen. II. Tabulae biologicae (Den Haag) 11, 136–191 (1936).Google Scholar
  19. Boynton, D.: Nutrition by foliar application. Annual Rev. Plant Physiol. 5, 31–54 (1954).Google Scholar
  20. Broyer, T.C.: The nature of the process of inorganic solute accumulation in roots. In E. Troug, Mineral nutrition of plants, p. 187–249. Madison, Wisconsin: Univ. Press 1951.Google Scholar
  21. Broyer, T. C., and R. Overstreet: Cation exchange in plant roots in relation to metabolic factors. Amer. J. Bot. 27, 425–430 (1940).Google Scholar
  22. Burd, J. S.: Rate of absorption of soil constituents at successive stages of plant growth. J. Agricult. Res. 18, 51–72 (1919).Google Scholar
  23. Burgerstein, A.: Die Transpiration der Pflanzen. Jena: Gustav Fischer 1904.Google Scholar
  24. Die Transpiration der Pflanzen. II. Jena: Gustav Fischer 1920.Google Scholar
  25. Burström, H.: The nitrate nutrition of plants. A general survey of the occurrence and assimilation of nitrate. Kungl. Lantbrukshögsk. Ann. Uppsala 13, 1–86 (1946).Google Scholar
  26. Chandler jr., R. F.: The amount and mineral nutrient content of freshly fallen leaf litter in the hardwood forests of central New York. J. Amer. Soc. Agricult. 33, 859–871 (1941).Google Scholar
  27. Amount and mineral nutrient content of freshly fallen needle litter of some northeastern conifers. Proc. Soil Sci. Soc. Amer. 8, 409–411 (1943).Google Scholar
  28. Chang, H. T., and W. E. Loomis: Effect of carbon dioxide on absorption of water and nutrients by roots. Plant Physiol. 20, 221–232 (1945).PubMedGoogle Scholar
  29. Crafts, A. S.: Composition of the sap of xylem and phloem and its relation to nutrition of the plant. In: Analyse des plantes et problèmes des engrais minéraux, p. 18–21. Paris: Inst. Rech. Huiles et Oléagneux 1954.Google Scholar
  30. Curtis, L. C.: Deleterious effects of guttated fluids on foliage. Amer. J. Bot. 30, 778–781 (1943).Google Scholar
  31. The influence of guttation fluid on pesticides. Phytopathology 34, 196–205 (1944).Google Scholar
  32. Curtis, O. F.: Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activity of living cells. Amer. J. Bot. 16, 154–168 (1929).Google Scholar
  33. The translocation of solutes in plants. New York: McGraw-Hill Book Co. 1935.Google Scholar
  34. Curtis, O. F., and S. D. Herty: The effect of temperature on translocation from leaves. Amer. J. Bot. 23, 528–532 (1936).Google Scholar
  35. Czapek, F.: Biochemie der Pflanzen, Bd. 2, 3. Aufl. Jena: Gustav Fischer 1925.Google Scholar
  36. Deleano, N. T., u. M. I. Andreesco: Beiträge zum Studium der Rolle und Wirkungsweise der Mineral- und organischen Stoffe im Pflanzenleben. I. Der quantitative Stoffwechsel der Mineral- und organischen Substanzen in den Salix fragilis-Blättern während ihrer Entwicklung. Beitr. Biol. Pflanz. 19, 249–286 (1932).Google Scholar
  37. Deleano, N. T., u. C. Bordeianu: Beiträge zum Studium der Rolle und Wirkungsweise der Mineral- und organischen Stoffe im Pflanzenleben. II. Der quantitative Stoffwechsel der Mineral- und organischen Substanzen in den Blättern und geschälten Samen von Aesculus hippocastanum während ihrer Entwicklung. Beitr. Biol. Pflanz. 20, 179–197 (1932).Google Scholar
  38. Deleano, N. T., u. P. Gotterbarm: Beiträge zum Studium der Rolle und Wirkungsweise der Mineral- und organischen Stoffe im Pflanzenleben. III. Der quantitative Stoffwechsel der Mineral- und organischen Substanzen des Roggens und der Gerste. Beitr. Biol. Pflanz. 24, 19–49 (1936).Google Scholar
  39. Dennison, R. A.: Growth and nutrient responses of little Turkish tobacco in long and short photoperiods. Plant Physiol. 20, 183–199 (1945).PubMedGoogle Scholar
  40. Dungan, G. H.: Losses to the corn crop caused by leaf injury. Plant Physiol. 9, 749–766 (1934).PubMedGoogle Scholar
  41. Ebermayer, E.: Die gesamte Lehre der Waldstreu. Berlin: Springer 1876.Google Scholar
  42. Échevin, R.: Variation de la matière minérale des feuilles au cours du jaunissement automnal. Rev. gén. Bot. 39, 405–419, 488–514 (1927).Google Scholar
  43. L’azote, le phosphore et le soufre chez les plantes ligneuses a feuille caduques. Rev. gén. Bot. 43, 517–677 (1931).Google Scholar
  44. Elser, E., u. J. Ganzmüller: Die chemische Zusammensetzung einiger Blütenstaubarten. Z. physiol. Chem. 194, 21–32 (1931).Google Scholar
  45. Engel, H.: Das Verhalten der Blätter bei Benetzung mit Wasser. Jb. wiss. Bot. 88, 816–861 (1939).Google Scholar
  46. Epstein, E.: Uptake and ionic environment (including external pH). Encyclop. Plant Physiol. 2, 398–408 (1956).Google Scholar
  47. Esau, K.: Plant anatomy. New York: John Wiley & Sons Inc. 1953.Google Scholar
  48. Firbas, F., u. H. Sagromsky: Untersuchungen über die Größe des jährlichen Pollenniederschlags vom Gesichtspunkt der Stoffproduktion. Biol. Zbl. 66, 129–140 (1947).Google Scholar
  49. Fogg, G. E.: Diurnal fluctuation in a physical property of leaf cuticle. Nature (Lond.) 154, 515 (1944).Google Scholar
  50. Quantitative studies on wetting of leaves by water. Proc. Roy. Soc. Lond., Ser. B 134, 503–522 (1947).Google Scholar
  51. Frey-Wyssling, A.: Die Stoffausscheidung der höheren Pflanzen. Berlin: Springer 1935a.Google Scholar
  52. Ein physiologisches System der pflanzlichen Ausscheidungsstoffe. Protoplasma 23, 393–409 (1935b).Google Scholar
  53. Die Guttation als allgemeine Erscheinung. Ber. Schweiz. bot. Ges. 51, 321–325 (1941).Google Scholar
  54. Fröschel, P.: Vergleichende Chemie pflanzlicher Zellen. Tabulae biologicae (Den Haag) 19, 258–316 (1948).Google Scholar
  55. Fujiwara, A., and S. Iida: Biochemical and nutritional studies on potassium. III. On the leaching extraction of potassium from the higher plants. Tohoku J. Agricult. Res. 7, 85–101 (1956).Google Scholar
  56. Gauch, H. G.: Mineral nutrition of plants. Annual Rev. Plant Physiol. 8, 31–64 (1957).Google Scholar
  57. Gäumann, E.: Der Stoffhaushalt der Buche (Fagus silvatica L.) im Laufe eines Jahres. Ber. Schweiz. bot. Ges. 44, 157–334 (1935).Google Scholar
  58. Geiger, R.: Das Klima der bodennahen Luftschicht, 3. Aufl. Braunschweig: F. Vieweg & Sohn 1950.Google Scholar
  59. Goodall, D. W., and F. G. Gregory: Chemical composition of plants as an index of their nutritional status. Imper. Bur. Hort. Plantation Crops. Techn. Comm. No 17. 1947.Google Scholar
  60. Guilbert, H. R., S. W. Mead and H. G. Jackson: The effect of leaching on the nutritive value of forage plants. Hilgardia 6, 13–26 (1931).Google Scholar
  61. Guyon, G.: Evaluation des pertes salines des végétaux par les eaux météoriques. C. r. Acad, Agricult. France 23, 845–850 (1937).Google Scholar
  62. Hall, W. C.: Effects of photoperiod and nitrogen supply on growth and reproduction in the gherkin. Plant Physiol. 24, 753–769 (1949).PubMedGoogle Scholar
  63. Hammar, H. E.: Effect of spray residues and other contamitants on leaf analysis. Plant Physiol. 31, 256–257 (1956).PubMedGoogle Scholar
  64. Hevesy, G. de: Interaction between the phosphorus atoms of the wheat seedling and the nutrient solution. Ark. Bot. (Stockh.) A 33, No 2 (1947).Google Scholar
  65. Hewitt, S. P., and O. F. Curtis: The effect of temperature on loss of dry matter and carbohydrate from leaves by respiration and translocation. Amer. J. Bot. 35, 746–755 (1948).Google Scholar
  66. Hiltner, E.: Der Tau und seine Bedeutung für den Pflanzenbau. Wiss. Arch. Landwirtsch., Abt. A 3, 1–70 (1930).Google Scholar
  67. Der Tau, ein vernachlässigter Lebensfaktor der Pflanzen. Mitt. dtsch. landw. Ges. 47, 825–827 (1932).Google Scholar
  68. Hoagland, D. R., and T. C. Broyer: Hydrogen-ion effects and the accumulation of salt by barley roots as influenced by metabolism. Amer. J. Bot. 27, 173–185 (1940).Google Scholar
  69. Hopkins, H. T., A. W. Specht and S. B. Hendricks: Growth and nutrient accumulation as controlled by oxygen supply to plant roots. Plant Physiol. 25, 193–209 (1950).PubMedGoogle Scholar
  70. Hornberger, R.: Chemische Untersuchungen über das Wachstum der Maispflanze. Landw. Jb. 11, 360–523 (1882).Google Scholar
  71. Jacobson, L., R. Overstreet, H. M. King and R. Handley: A study of potassium absorption by barley roots. Plant Physiol. 25, 639–647 (1950).PubMedGoogle Scholar
  72. Jenny, H.: Contact phenomena between adsorbents and their significance in plant nutrition. In E. Troug, Mineral nutrition of plants, p. 107–132. Madison: Wisconsin Univ. Press 1951.Google Scholar
  73. Jenny, H., and R. Overstreet: Contact effects between plant roots and soil colloids. Proc. Nat. Acad. Sci. U.S.A. 24, 384–392 (1938).Google Scholar
  74. Kingsley, A. F., C. O. Clagett, H. J. Klosterman and T. E. Stoa: LOSS of minerals from mature wheat and flax by simulated rain. Agron. J. 49, 37–39 (1957).Google Scholar
  75. Knowles, F., and J. E. Watkin: The assimilation and translocation of plant nutrients in wheat during growth. J. Agricult. Sci. 21, 612–637 (1931).Google Scholar
  76. Killian, C.: Études écologiques sur la répartition du chlorure de sodium dans les psammophytes et halophytes algériens. Ann. de Physiol. 7, 419–469 (1931).Google Scholar
  77. Knudsen, F., u. H. Mauritz-Hansson: Über die Produktion von Blattabfall und dessen Zusammensetzung in einem mittelschwedischen Birkenbestand. Sv. Skogsvårdsför. Tidskr. 37, 339–347 (1939) [Swedish with German summary].Google Scholar
  78. Kramer, P. J.: Causes of decreased absorption of water by plants in poorly aerated media. Amer. J. Bot. 27, 216–220 (1940).Google Scholar
  79. The uptake of salts by plant cells. Encyclop. Plant Physiol. 2, 290–315 (1956).Google Scholar
  80. Lausberg, T.: Quantitative Untersuchungen über die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 81, 769–806 (1935).Google Scholar
  81. Le Clerc, J. A., and J. F. Breazeale: Plant food removed from growing plants by rain or dew. U.S. Dept. Agr. Yearbook 1908, p. 389–402.Google Scholar
  82. Lettmann, P., u. H. Schanderl: Tau und Reif. Wiss. Abh. Reichsamt Wetterdienst, Berlin 9, Nr 4 (1942).Google Scholar
  83. Lepeschkin, W. W.: Zur Kenntnis des Mechanismus der aktiven Wasserausscheidung der Pflanzen. Beih. bot. Zbl. 19, Abt. I, 409–452 (1906).Google Scholar
  84. Influence of temperature and light upon the exosmosis and accumulation of salts in leaves. Amer. J. Bot. 35, 254–259 (1948).Google Scholar
  85. Lindberg, S., u. H. Norming: On the production of needle litter and its composition in a spruce stand near Stockholm. Sv. Skogsvårdsför. Tidskr. 41, 353–360 (1943) [Original Swedish].Google Scholar
  86. Linskens, H. F.: Über die Änderung der Benetzbarkeit von Blattoberflächen und deren Ursache. Planta (Berl.) 41, 40–51 (1952).Google Scholar
  87. Loehwing, F. W.: Root interactions of plants. Bot. Rev. 4, 195–239 (1937).Google Scholar
  88. Nutritional factors in plant growth and development. Proc. Iowa Acad. Sci. 49, 61–112 (1942).Google Scholar
  89. Mineral nutrition in relation to the ontogeny of plants. In E. Troug, Mineral nutrition of plants, p. 343–358. Madison: Wisconsin Univ. Press 1951.Google Scholar
  90. Long, W. G., D. V. Sweet and H. B. Tukey: The loss of nutrients by leaching of the foliage. Michigan State Univ. Agricult. Exper. Stat. Quart. Bull. 38, 528–532 (1956).Google Scholar
  91. Lundegårdh, H.: Die Blattanalyse. Jena: Gustav Fischer 1945a.Google Scholar
  92. Absorption, transport and exudation of inorganic ions by the roots. Ark. Bot. (Stockh.) A 32, Nr 12 (1945b).Google Scholar
  93. Mechanisms of absorption, transport, accumulation and secretion of ions. Annual Rev. Plant Physiol. 6, 1–24 (1955).Google Scholar
  94. Lundegårdh, H., H. Burström U. E. Rennerfelt: Untersuchungen über die Salzaufnahme der Pflanzen. II. Die Aufnahme von Alkali- und Erdalkalichloriden. Sv. bot. Tidskr. 26, 271–283 (1932).Google Scholar
  95. Lundegårdh, H., U. G. Stenlid: On the exudation of nucleotides and flavanone from living roots. Ark. Bot. (Stockh.) A 31, Nr 10 (1944).Google Scholar
  96. Luttkus, K., u. R. Bötticher: Über die Ausscheidung von Aschenstoffen durch die Wurzeln. I. Planta (Berl.) 29, 325–340 (1939).Google Scholar
  97. Lutz, H. J., and R. F. Chandler: Forest soils. New York: John Wiley & Sons Inc. 1947.Google Scholar
  98. Mann, C. E. T., and T. Wallace: The effects of leaching with cold water on the foliage of the apple. J. Pomol. a. Horticult. Sci. 4, 146–161 (1925).Google Scholar
  99. Mason, T. G., and E. J. Maskell: Further studies on transport in the cotton plant. I. Preliminary observations on the transport of phosphorus, potassium, and calcium. Ann. of Bot. 45, 125–173 (1931).Google Scholar
  100. Mason, T. G., and E. Phillis: Further studies on transport in the cotton plant. V. Oxygen supply and the activation of diffusion. Ann. of Bot. 50, 455–500 (1936).Google Scholar
  101. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).Google Scholar
  102. Mes, M. G.: Excretion (recretion) of phosphorus and other mineral elements by leaves under the influence of rain. S. Afric. J. Sci. 50, 167–172 (1954).Google Scholar
  103. Metz, L. J.: Weight and nitrogen and calcium content of the annual litter fall of forests in the South Carolina Piedmont. Proc. Soil Sci. Soc. Amer. 16, 38–41 (1952).Google Scholar
  104. Michael, G., U. W. Bergmann: Bodenkohlensäure und Wurzelwachstum. Z. Pflanzenernährg, Düng. u. Bodenkde 65, 180–194 (1954).Google Scholar
  105. Miller, E. C.: Plant Physiology, 2nd ed. New York: McGraw-Hill Book Comp. 1938.Google Scholar
  106. Molisch, H.: Die Lebensdauer der Pflanze. Jena: Gustav Fischer 1929.Google Scholar
  107. Moore, R. F.: Downward translocation of phosphorus in separated maize roots. Amer. J. Bot. 36, 166–169 (1949).Google Scholar
  108. Moose, C. A.: Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Plant Physiol. 13, 365–380 (1938).PubMedGoogle Scholar
  109. Mork, E.: Über den Streufall in unseren Wäldern. Medd. norske Skogforsøksvesen 8, 297–365 (1942) [Norwegian with German summary].Google Scholar
  110. Mothes, K.: Stickstoffbilanz und Stickstoffverlust. Planta (Berl.) 28, 599–616 (1938).Google Scholar
  111. Olsen, C.: The mineral, nitrogen and sugar content of beech leaves and beech leaf sap at various times. C. r. Trav. Labor. Carlsberg, Sér. chim. 26, 197–230 (1948).Google Scholar
  112. Overstreet, R., and L. Jacobson: Mechanisms of ion absorption by roots. Annual Rev. Plant Physiol. 3, 189–206 (1952).Google Scholar
  113. Pearsall, W. H., and M. C. Billimoria: Losses of nitrogen from higher plants. Biochemic. J. 31, 1743–1750 (1937).Google Scholar
  114. Penston, N. L.: Return of mineral elements to the soil by plants. Nature (Lond.) 136, 268–269 (1935).Google Scholar
  115. Phillis, E., and T. G. Mason: Further studies on transport in the cotton plant. VI. Interchange between the tissues of the corolla. Ann. of Bot. 50, 679–697 (1936).Google Scholar
  116. On diurnal variations in the mineral content of the leaf of the cotton plant. Ann. of Bot. 6, 435–442 (1942).Google Scholar
  117. Plice, M. J.: Uptake of minerals by trees in successive years. Proc. Oklahoma Acad. Sci. 24, 60–73 (1944).Google Scholar
  118. Pohl, F.: Die Pollenerzeugung der Windblütler. Eine vergleichende Untersuchung mit Ausblicken auf den Bestäubungshaushalt tierblütiger Gewächse und die pollenanalytische Waldgeschichtsforschung. Beih. bot. Zbl. A 56, 365–470 (1937a).Google Scholar
  119. Die Pollengewichte einiger windblütiger Pflanzen und ihre ökologische Bedeutung. Beih. bot. Zbl. A 57, 112–172 (1937b).Google Scholar
  120. Prianischnikow, D. N.: Über die Ausscheidung von Ammoniak durch die Pflanzenwurzeln bei Säurevergiftung. Biochem. Z. 193, 211–215 (1928).Google Scholar
  121. Ratner, E. I.: Interaction between roots and soil colloids as one of the problems of the physiology of mineral nutrition of plants. II. Age variations in the fixing capacity of the plasm. C. r. Acad. Sci. URSS. 43, 126–130 (1944).Google Scholar
  122. Interaction between roots and soil colloids as a problem of mineral nutrition of plants. Role of the root system. C. r. Acad. Sci. URSS. 48, 64–67 (1945).Google Scholar
  123. Repp, G.: Ökologische Untersuchungen im Halophytengebiet am Neusiedlersee. Jb. wiss. Bot. 88, 554–632 (1939).Google Scholar
  124. Rippel, A.: Über den Zusammenhang zwischen dem Aufnahmeverlauf der Bodennährstoffe bei den höheren Pflanzen und der Beweglichkeit dieser Stoffe in der Pflanze. Biochem. Z. 188, 272–282 (1927).Google Scholar
  125. Romell, L.-G.: Litter production and annual growth of blueberry bushes and mosses in northern spruce woods. Sv. bot. Tidskr. 33, 366–382 (1939) [Swedish with English summary].Google Scholar
  126. Ruhland, W.: Untersuchungen über die Hautdrüsen der Plumbaginaceen. Jb. wiss. Bot. 55, 409–498 (1915).Google Scholar
  127. Schmidt, H.: Zur Funktion der Hydathoden von Saxifraga. Planta (Berl.) 10, 314–343 (1930).Google Scholar
  128. Schoch, K.: Quantitative Erfassung der kutikularen Rekretion von K und Ca. Ber. Schweiz. bot. Ges. 65, 205–250 (1955).Google Scholar
  129. Schumacher, W.: Untersuchungen über die Wanderung des Fluoreszeins in den Siebröhren. Jb. wiss. Bot. 77, 685–732 (1933).Google Scholar
  130. Schweizer, J.: Physiologische Studies bij Koffie. I. De chemische samenstelling van het blad in verband met seizoen en vruchtdracht. Arch. Koffiekultuur 14, 165–198 (1940).Google Scholar
  131. Shive, J. W.: The balance of ions and oxygen tension in nutrient substrates for plants. Soil Sci. 51, 445–459 (1941).Google Scholar
  132. Sjörs, H.: Meadows in Grangärde Finnmark, SW. Dalarna, Sweden. Acta phytogeogr. suecica 34 (1954) [Swedish with English summary].Google Scholar
  133. Sperlich, A.: Das trophische Parenchym. B. Exkretionsgewebe. In Handbuch der Pflanzenanatomie, Abt. 1, Teil 2, Bd. IVB. Berlin: Gebrüder Bornträger 1939.Google Scholar
  134. Stahl, E.: Zur Physiologie und Biologie der Exkrete. Flora (Jena), N. F. 13, 1–132 (1919).Google Scholar
  135. Stenlid, G.: Methylene blue and α-α′-dipyridyl, two different types of inhibitors for aerobic metabolism in young wheat roots. Physiol. Plantarum (Copenh.) 3, 197–203 (1950).Google Scholar
  136. Steubing, L.: Studien über den Taufall als Vegetationsfaktor. Ber. dtsch. bot. Ges. 68, 55–70 (1955).Google Scholar
  137. Stewart, I., and C. D. Leonard: Molybdenum deficiency in Florida Citrus. Nature (Lond.) 170, 714–715 (1952).Google Scholar
  138. Swart, N.: Die Stoffwanderung in ablebenden Blättern. Jena: Gustav Fischer 1914.Google Scholar
  139. Tamm, C. O.: Removal of plant nutrients from tree crowns by rain. Physiol. Plantarum (Copenh.) 4, 184–188 (1951).Google Scholar
  140. Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Medd. Stat. Skogsforskn. Inst. 43, No 1, 1–140 (1953).Google Scholar
  141. Troug, E.: Mineral nutrition of plants. Madison: Wisconsin Univ. Press 1951.Google Scholar
  142. True, R. H., and H. H. Bartlett: The exchange of ions between the roots of Lupinus albus and culture solutions containing two nutrient salts. Amer. J. Bot. 2, 311–323 (1915).Google Scholar
  143. The exchange of ions between the roots of Lupinus albus and culture solutions containing three nutrient salts. Amer. J. Bot. 3, 47–57 (1916).Google Scholar
  144. Vlamis, J., and A. R. Davis: Germination, growth and respiration of rice and barley seedlings at low oxygen pressures. Plant Physiol. 18, 685–692 (1943).PubMedGoogle Scholar
  145. Wagner, H.: Zum Wachstumsverlauf verschiedener Getreidearten, insbesondere von Hafer. Z. Pflanzenernährg, Düng. u. Bodenkde A 25, 48–102 (1932).Google Scholar
  146. Walker, R. B.: Molybdenum deficiency in serpentine barren soils. Science (Lancaster, Pa.) 108, 473–475 (1948).Google Scholar
  147. Wallace, T.: Experiments on the effects of leaching with cold water on the foliage of fruit trees. I. The course of leaching of dry matter, ash and potash from leaves of apple, pear, plum, black currant and gooseberry. J. Pomol. a. Horticult. Sci. 8, 44–60 (1930).Google Scholar
  148. The diagnosis of mineral deficiencies in plants by visual symptoms, 2nd ed. London: His Majesty’s Stationery Office 1951.Google Scholar
  149. Walter, H.: Die ökologischen Verhältnisse in der Namib-Nebelwüste (Südwestafrika). Jb. wiss. Bot. 84, 58–222 (1936).Google Scholar
  150. Einführung in die Phytologie. III: 1. Standortslehre. Stuttgart: E. Ulmer 1951.Google Scholar
  151. Wehmer, C.: Zur Frage nach der Entleerung absterbender Organe, insbesondere der Laubblätter. Landw. Jb. 21, 513–569 (1892).Google Scholar
  152. Weigert, J.: Hagelschaden an unseren Kulturpflanzen. Landw. Jb. Bayern 3, 49–57 (1913).Google Scholar
  153. Weissman, G. S.: Growth and nitrogen absorption of wheat seedlings as influenced by the ammonium:nitrate ratio and the hydrogen-ion concentration. Amer. J. Bot. 37, 725–738 (1950).Google Scholar
  154. Wiklander, L.: Cation and anion exchange phenomena. In F. E. Bear, Chemistry of the soil, p. 107–148. New York: Reinhold Publ. Corp. 1955.Google Scholar
  155. Wilfarth, H., H. Römer U. G. Wimmer: Über die Nährstoffaufnahme der Pflanzen in verschiedenen Zeiten ihres Wachstums. Landw. Versuchsstat. 63, 1–70 (1905).Google Scholar
  156. Will, G. M.: Removal of mineral nutrients from tree crowns by rain. Nature (Lond.) 176, 1180 (1955).Google Scholar
  157. Williams, R. F.: Redistribution of mineral elements during development. Annual Rev. Plant Physiol. 6, 25–42 (1955).Google Scholar
  158. Withner, C. L.: Movement of P32 in maturing corn plants. Plant Physiol. 24, 527–529 (1949).PubMedGoogle Scholar
  159. Zattler, F.: Tau und Pflanzenbau. Dtsch. landw. Presse 62, Nr 13–15 (1935).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin . Göttingen . Heidelberg 1958

Authors and Affiliations

  • Göran Stenlid

There are no affiliations available

Personalised recommendations