Abstract

In 1804, de Saussure published the results of observations which showed that different substances were taken up by plants in different proportions. For some time it was thought that the uptake of nutrient substances depended on their diffusion into the plant in solution in water and that the differences in proportion were due to differences in utilization of the compounds after absorption (e.g. Sachs 1875). Later, when details of the mechanism of absorption by cells were investigated, it was realised that the entry of ions was not dependent merely on their diffusion but was the result not only of the complicated ionic matrix which constitutes the cytoplasm at any time, but also of processes dependent on the cellular metabolism, changing as metabolism changes. Experimental evidence came from the work of Nathansohn (1901, 1903), Osterhout (various papers), Pantanelli (1905), Stiles and Kidd (1919), Redfern (1922) and from the well known school of Hoagland. In more recent years the subject has been developed by Lundegårdh in Sweden, Arisz in Holland, Steward in England and Robertson in Australia. Detailed discussions of uptake of electrolytes by plant cells have been given by Hoagland (1944), Lundegårdh (1951), various authors in “Mineral Nutrition of Plants” (edited by Truog 1951) and in “Active Transport and Secretion” (edited by Brown and Danielli 1954).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alberda, Th.: The influenee of some external factors on growth and phosphate uptake of maize plants of different salt conditions. Extrait du Rec. Trav. bot. néerl. 41, 542–601 (1948).Google Scholar
  2. Andel, O. M. van: The influenee of salts on the exudation of tomato plants. Acta bot. néerl. 2, 445–521 (1953).Google Scholar
  3. Arens, K.: Zur Kenntnis der Karbonatassimilation der Wasserpflanzen. Planta (Berl.) 10, 814–816 (1930).CrossRefGoogle Scholar
  4. Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. Planta (Berl.) 20 621–658 (1933).Google Scholar
  5. Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. II. Die Ca(H2CO3)2-Assimilation. Jb. wiss. Bot. 83, 513–560 (1936).Google Scholar
  6. Arisz, W. H.: Contribution to a theory on the absorption of salts by the plant and their transport in parenchymatous tissue. Proc. Kon. Ned. Akad. v. Wetensch. 48, 420–446 (1945).Google Scholar
  7. Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. I. The active uptake of chlorine. Proc. Kon. Ned. Akad. v. Wetensch. 50, 1019–1032 (1947).Google Scholar
  8. II. Analysis of the transport of chlorine. Proc. Kon. Ned. Akad. v. Wetensch. 50, 1235–1245 (1947).Google Scholar
  9. Active uptake, vacuole-secretion and plasmatic transport of chloride ions in leaves of Vallisneria spiralis. Acta bot. néerl. 1, 506–515 (1953).Google Scholar
  10. Arisz, W. H., R. J. Helder and R. van Nie: Analysis of the exudation process in tomato plants. J. of Exper. Bot. 2, 257–297 (1951).CrossRefGoogle Scholar
  11. Arnon, D. I.: Effect of ammonium and nitrate nitrogen on the mineral compositions and sap characteristics of barley. Soil Sci. 48, 295–307 (1939).CrossRefGoogle Scholar
  12. Arnon, D. I., W. E. Fratzke and C. M. Johnson: Hydrogen ion concentration in relation to absorption of inorganic nutrients by higher plants. Plant Physiol. 17, 515–524 (1942).PubMedCrossRefGoogle Scholar
  13. Arnon, D. I., and C. M. Johnson: Influenee of hydrogen ion concentration on the growth of higher plants under eontrolled conditions. Plant Physiol. 17, 525–539 (1942).PubMedCrossRefGoogle Scholar
  14. Arnon, D. I., P. R. Stout and F. Sipos: Radioactive phosphorus as an indicator of phosphorus absorption of tomato fruits at various stages of development. Amer. J. Bot. 27, 791–798 (1940).CrossRefGoogle Scholar
  15. Asprey, G. F.: Studies an Antagonism. I. The effect of the presence of salts of monovalent, divalent and trivalent cations on the intake of calcium and ammonium ions by potato tuber tissue. Proc. Roy. Soc. Lond. Ser. B 112, 451–472 (1933).CrossRefGoogle Scholar
  16. Ball, E.: Studies of the accumulation of certain radio isotopes by a callus culture. Amer. J. Bot. 40, 306–316 (1953).CrossRefGoogle Scholar
  17. Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas, and W. Stepka: The path. of carbon in photosynthesis. V. Paper chromatography and radio-autography of the products. J. Amer. Chem. Soc. 72, 1710–1718 (1950).CrossRefGoogle Scholar
  18. Bickerdike, R. N.: Personal communication (1955).Google Scholar
  19. Biddulph, O.: Proc. Auburn Conf. on radioactive isotopes. Alabama Polytechnic Inst., Auburn, Alabama 1948.Google Scholar
  20. Black, R. F.: Effect of sodium chloride in water culture on the ion uptake and growth of Atriplex hastata L. Austral. J. Biol. Sci. 9, 67–80 (1956).Google Scholar
  21. Blinks, L.R.: The relations of bioelectric phenomena to ionic permeability and to metabolism in large plant cells. Cold Spring Harbor Symp. Quant. Biol. 8, 204–215 (1940).CrossRefGoogle Scholar
  22. Briggs, G. E.: The relation between concentration of hydrogen ions and the effect of weak acids or bases on metabolic activity. J. of Exper. Bot. 5, 263–268 (1954).CrossRefGoogle Scholar
  23. Briggs, G. E., and R. N. Robertson: Diffusion and absorption in disks of plant tissue. New Phytologist 47, 265–283 (1948).CrossRefGoogle Scholar
  24. Apparent free space. Annual Rev. Plant Physiol. 8, 11–30 (1957).Google Scholar
  25. Brouwer, R.: The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta bot. néerl. 3, 264–312 (1954).Google Scholar
  26. Brown, R.: The gaseous exchange between the root and the shoot of the seedling of Cucurbita pepo. Ann. of Bot. 11, 417–437 (1947).Google Scholar
  27. Brown, R., and J. F. Danielli: Active Transport and Secretion. Symposia Soc. f. Exper. Biol. 1954, No VIII.Google Scholar
  28. Brown, R., and P. Rickless: A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and of nutrients. Proc. Roy. Soc. Lond. Ser. B 136, 110–125 (1949).CrossRefGoogle Scholar
  29. Broyer, T. C.: The nature of the process of inorganic solute accumulation in roots. Mineral Nutrition of Plants. (ed. Truog),p. 187–249. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  30. Broyer, T.C., A. B. Carlton, C. M. Johnson and P. R. Stout: Chlorine—a micronutrient element for higher plants. Plant Physiol. 29, 526–532 (1954).PubMedCrossRefGoogle Scholar
  31. Burström, H.: Über die Verarbeitung von Nitrate in Weizenpflanzen. Ann. Agricult. Coll. Sweden 6, 1–36 (1937).Google Scholar
  32. Über die Aufnahme und Assimilation von Nitrat durch Weizenkeimlinge. Ann. Agricult. Coll. Sweden 7, 247–290 (1939).Google Scholar
  33. Photosynthesis and assimilation of nitrate by wheat leaves. Ann. Agricult. Coll. Sweden 11, 1–50 (1943).Google Scholar
  34. Studies on the buffer systems of cells. Ark Bot. (Stoekh.) A 32 (7), 1–18 (1945a).Google Scholar
  35. The nitrate nutrition of plants. Roy. Agricult. Coll. Sweden 13, 1–86 (1945 b).Google Scholar
  36. Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617–635 (1953).CrossRefGoogle Scholar
  37. Ion uptake by young wheat plants. III. Phosphate absorption by excised roots. Physiol. Plantarum (Copenh.) 6, 637–661 (1953).Google Scholar
  38. Calvin, M., and A. A. Benson: The path of carbon in photosynthesis. IV. The identity and sequence of the intermediates in sucrose synthesis. Science (Lancaster, Pa.) 109, 140–142 (1949).Google Scholar
  39. Cohen, Morris, and E. Bowler: Lamellar structure of the tobacco chloroplast. Protoplasma 42, 414–416 (1953).CrossRefGoogle Scholar
  40. Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).PubMedCrossRefGoogle Scholar
  41. Danielli, J. F.: Theories of cell permeability. In Permeability of Natural Membranes by H. Davson and J. F. Danielli, p. 310–340. Cambridge: Cambridge Univ. Press 1943.Google Scholar
  42. Dittrich, W.: Zur Physiologie des Nitratumsatzes in höheren Pflanzen (unter besonderer Berüeksiehtigung der Nitratspeicherung). Planta (Berl.) 12, 69 (1930).CrossRefGoogle Scholar
  43. Elgabaly, M. M., H. Jenny and R. Overstreet: Effect of type of clay mineral on the uptake of zinc and potassium by barley roots. Soil Sci. 55, 257–263 (1943).CrossRefGoogle Scholar
  44. Epstein, E.: Mechanism of ion absorption by roots. Nature (Lond.) 171, 83 (1953).CrossRefGoogle Scholar
  45. Epstein, E., and C. E. Hagen: A kinetie study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474 (1952).PubMedCrossRefGoogle Scholar
  46. Epstein, E., and J. E. Leggett: The absorption of alkaline earth cations by barley roots: kinetics and mechanism. Amer. J. Bot. 41, 785–791 (1954).CrossRefGoogle Scholar
  47. Epstein, E., and P. R. Stout: The micronutrient cations, iron, manganese, zinc, and copper: their uptake by plants from the adsorbed state. Soil Sci. 72, 47–65 (1951).CrossRefGoogle Scholar
  48. Erkama, J.: Über die Rolle von Kupfer und Mangan im Leben der höheren Pflanzen. Ann. Acad. Sci. fenn. 25, 1–105 (1947).Google Scholar
  49. Farrant, J. L., C. Potter, R. N. Robertson and M. J. Wilkins: The structure of plant mitochondria. Austral. J. Bot. 4, 117–124 (1956).CrossRefGoogle Scholar
  50. Friedrichsen, I.: Über Funktionen des Mangans im Stoffwechsel der höheren Pflanze. Planta (Berl.) 34, 67–87 (1944).CrossRefGoogle Scholar
  51. Gauch, H. G., and W. M. Dugger: The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466 (1953).PubMedCrossRefGoogle Scholar
  52. Handley, R., and R. Overstreet: Respiration and salt absorption by excised barley roots. Plant Physiol. 30, 418–426 (1955).PubMedCrossRefGoogle Scholar
  53. Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta botan. néerl. 1, 361–434 (1952).Google Scholar
  54. Hoagland, D. R.: Lectures on the inorganic nutrition of plants. Chronica Bot. (Waltham, Mass.) 1944.Google Scholar
  55. Hoagland, D. R., and T. C. Broyer: General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11, 471–507 (1936).PubMedCrossRefGoogle Scholar
  56. Accumulation of salt and permeability in plant cells. J. Gen. Physiol. 25, 865–880 (1942).Google Scholar
  57. Hoagland, D. R., and A. R. Davis: The intake and accumulation of electrolytes by plant cells. Protoplasma 6, 610–626 (1929).CrossRefGoogle Scholar
  58. Further experiments on the absorption of ions by plants, including observations on the effect of light. J. Gen. Physiol. 6, 47–62 (1923).Google Scholar
  59. Hoagland, D. R., P. L. Hibbard and A. R. Davis: The influence of light, temperature and other conditions on the ability of Nitella cells to concentrate halogens in the cell sap. J. Gen. Physiol. 10, 121–146 (1926).PubMedCrossRefGoogle Scholar
  60. Höber, R.: Physical chemistry of cells and tissues. London: J. a. A. Churchill 1946.Google Scholar
  61. Holm-Hansen, Osmund, G. C. Gerloff and F. Skoog: Cobalt as an essential element for blue-green algae. Physiol. Plantarum (Copenh.) 7, 665–675 (1954).CrossRefGoogle Scholar
  62. Honda, S. I.: Ascorbic acid oxidase in barley roots. Plant Physiol. 30, 174–181 (1955a).CrossRefGoogle Scholar
  63. Succinoxidase and cytochrome oxidase in barley roots. Plant Physiol. 30, 402–410 (1955b).Google Scholar
  64. The salt respiration of barley roots. Plant Physiol. 31, 62–70 (1956).Google Scholar
  65. Honda, S. I., and R. N. Robertson: Studies in the metabolism of plant cells. XI. The Donnan equilibration and the ionic relations of plant mitochondria. Austral. J. Biol. Sci. 9, 305–320 (1956).Google Scholar
  66. Honert, T. H. van den: The phosphate absorption by sugar cane. Vereen. Proefstations — Personeel 1933.Google Scholar
  67. Limiting factors in phosphate absorption. Vereen. Proefstations-Personeel 1936.Google Scholar
  68. Hope, A. B.: Membrane potential differences in bean roots. Austral. J. Sci. Res. B 4, 265–271 (1951).Google Scholar
  69. Hope, A. B., and R. N. Robertson: Bioelectric experiments and the properties of the plant protoplasm. Austral. J. Sci. 15, 197–203 (1953).Google Scholar
  70. Hope, A. B., and P. C. Stevens: Electric potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res. B 5, 335–343 (1952).Google Scholar
  71. Humphries, E. C.: The absorption of ions by excised root systems. III. Observations on roots of pea plants grown in solutions deficient in phosphorus, nitrogen or potassium. J. of Exper. Bot. 3, 291–309 (1952).CrossRefGoogle Scholar
  72. Hylmö, Bertil.: Transpiration and ion absorption. Physiol. Plantarum (Copenh.) 6, 333–405 (1953).CrossRefGoogle Scholar
  73. Passive components in the ion absorption of the plant. I. The zonal ion and water absorption in Brouwer’s experiments. Physiol. Plantarum (Copenh.) 8, 433–449 (1955).Google Scholar
  74. Huber, B.: Vergleichende Betrachtung der pflanzhchen Saftströme. Naturwiss. 40, 180–185 (1953).CrossRefGoogle Scholar
  75. Jacobson, L., and L. Audin: Organic acid metabolism and ion absorption in roots. Plant Physiol. 29, 70–75 (1954).PubMedCrossRefGoogle Scholar
  76. Jacobson, L., and R. Overstreet: A study of the mechanism of ion absorption by plant roots using radioactive elements. Amer. J. Bot. 34, 415–420 (1947).CrossRefGoogle Scholar
  77. Jenny, H.: Contact phenomena between adsorbents and their significance in plant nutrition. Mineral nutrition of plants (ed. E. Truog), p. 107–132. Madison: University of Wisconsin Press 1951.Google Scholar
  78. Jenny, H., and A. D. Ayers: The influence of the degree of saturation of soil colloids on the nutrient intake by roots. Soil Sci. 48, 443–459 (1939).CrossRefGoogle Scholar
  79. Jenny, H., and R. Overstreet: Cation exchange between plant roots and soil colloids. Soil Sci. 47, 257–272 (1939).CrossRefGoogle Scholar
  80. Kramer, P. J.: Plant and soil water relationships. New York: McGraw Hill Book Co. Inc. 1949.Google Scholar
  81. Kylin, Anders: The uptake and metabolism of sulphate by deseeded wheat plants. Physiol. Plantarum (Copenh.) 6, 775–795 (1953).CrossRefGoogle Scholar
  82. Kylin, A., and B. Hylmö: Uptake and transport of sulphate in wheat. Active and passive components. Physiol. Plantarum (Copenh.) 10, 467–484 (1957).CrossRefGoogle Scholar
  83. Levitt, J., and G. W. Todd: Metal-protein complexes in the potato. Physiol. Plantarum (Copenh.) 5, 419–429 (1952).CrossRefGoogle Scholar
  84. Long, W. G., and J. Levitt: Distribution of Ca45 and P32 in protein fractions as a result of absorption by potato slices. Physiol. Plantarum (Copenh.) 5, 610–619 (1952).CrossRefGoogle Scholar
  85. Lowenhaupt, B.: The transport of calcium and other cations in submerged aquatic plants. Biol. Rev. 31, 371–395 (1956).CrossRefGoogle Scholar
  86. Lundegårdh, H.: Die Nährstoffaufnahme der Pflanze. Jena 1932.Google Scholar
  87. Investigations as to the absorption and accumulation of inorganic ions. Ann. Agricult. Coll. Sweden 8, 234–404 (1940).Google Scholar
  88. Untersuchungen über das chemisch-physikahsche Verhalten der Oberfläche lebender Zellen. Protoplasma 35, 548–587 (1941).Google Scholar
  89. Absorption, transport and exudation of inorganic ions by the roots. Ark. Bot. (Stockh.) A 32, 1–139 (1945).Google Scholar
  90. The translocation of salts and water through wheat roots. Physiol. Plantarum (Copenh.) 3, 103–151 (1950).Google Scholar
  91. Leaf Analysis (Translated by R. L. Mitchell). London (England): Hilger & Watts Ltd. 1951.Google Scholar
  92. Anion respiration: The experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Symposia Soc. f. Exper. Biol. 8, 262–296 (1954a).Google Scholar
  93. Enzyme systems conducting the aerobic respiration of roots of wheat and rye. Ark. Kemi (Stockh.) 7, 451–478 (1954b).Google Scholar
  94. Mechanism of Absorption, Transport, Accumulation and Secretion of Ions. Ann. Rev. Plant Physiol. 6, 1–24 (1955).Google Scholar
  95. Lundegårdh, H., u. H. Burström: Untersuchungen über die Salzaufnahme der Pflanzen. III. Quantitative Beziehungen zwischen Atmung und Anionenaufnahme. Biochem. Z. 261, 235–251 (1933).Google Scholar
  96. Untersuchungen über die Atmungsvorgänge in Pflanzenwurzeln. Biochem. Z. 277, 223–249 (1935).Google Scholar
  97. Lundegårdh, H., H. Burström and E. Rennerfelt: Untersuchungen über die Salzaufnahme der Pflanzen. II. Die Aufnahme von Alkali- und Erdalkalichloriden. Sv. bot. Tidskr. 26, 271–283 (1932).Google Scholar
  98. Mandels, G. R.: The properties and surface location of an enzyme oxidizing ascorbic acid in fungus spores. Arch. of Biochem. a. Biophysics 42, 164–173 (1953).CrossRefGoogle Scholar
  99. Marshall, C. E.: The activities of cations held by soil colloids and the chemical environment of plant roots. Mineral Nutrition of Plants (ed. E. Truog), p. 57–77. Madison: University of Wisconsin Press 1951.Google Scholar
  100. Mattson, S., E. Eriksson, K. Vahtras and E. Williams: Phosphate relationships of soil and plant. I. Membrane equilibria and phosphate uptake. Ann. Roy. Agricult. Coll. Sweden 16, 458–484 (1949).Google Scholar
  101. Mercer, F. V., A. J. Hodge, A. B. Hope and J. D. Mc Lean: The structure and swelling properties of Nitella chloroplasts. Austral. J. Biol. Sci. 8, 1–18 (1955).Google Scholar
  102. Michael, G. v., u. E. Wilberg: Untersuchungen über die Stoffaufnahme der höheren Pflanze. II. Die Lithiumaufnahme bei Roggenkeimpflanzen. Z. Pflanzenernährg 52, 242–258 (1951).Google Scholar
  103. Millerd, A., J. Bonner, B. Axelrod and R. Bandurski: Oxidative and phosphorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37, 855–862 (1951).CrossRefGoogle Scholar
  104. Millikan, C. R.: Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution. J. Austral. Inst. Agricult. Sci. 13, 180–186 (1947).Google Scholar
  105. Effects on flax of a toxic concentration of boron, iron, molybdenum, aluminium, copper, zinc, manganese, cobalt or nickel in the nutrient solution. Proc. Roy. Soc. Victoria 41, 25–42 (1949).Google Scholar
  106. Relation between nitrogen source and the effects on flax of an excess of manganese or molybdenum in the nutrient solution. Austral. J. Sci. Res. 3, 450–473 (1950).Google Scholar
  107. Milthorpe, J., and R. N. Robertson: Studies in the metabolism of plant cells. VI. Salt respiration and accumulation in barley roots. Austral. J. Exper. Biol. a. Med. Sci. 26, 189–197 (1948).CrossRefGoogle Scholar
  108. Mulder, E. G.: Importance of molybdenum in the nitrogen metabolism of microorganism and higher plants. Plant a. Soil 1, 94–119 (1948).CrossRefGoogle Scholar
  109. Mullins, L. J.: Radioactive ion distribution in protoplasmic granules. Proc. Soc. Exper. Biol. a. Med. 45, 856–858 (1940).Google Scholar
  110. Nathansohn, A.: Zur Lehre von Stoffaustausch. Ber. dtsch. bot. Ges. 19, 509–512 (1901).Google Scholar
  111. Über die Regulationserscheinung im Stoffaustausch. Jb. wiss. Bot. 38, 248–290 (1903).Google Scholar
  112. Newcomb, E. H.: Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exper. Biol. a. Med. 76, 504–509 (1951).Google Scholar
  113. Nie, R. van, R. J. Helder and W. H. Arisz: Ion-secretion into the xylem and osmotic regulation of exudation. Proc. Kon. Ned. Akad. v. Wetensch. 53, 567–575 (1950).Google Scholar
  114. Olsen, C.: Water culture experiments with higher green plants in nutrient solutions having different concentrations of calcium. C. r. Trav. Labor. Carlsberg, Sér. chim. 24, 69–97 (1942).Google Scholar
  115. The significance of concentration for the rate of ion absorption by higher plants in water culture. C. r. Trav. Labor. Carlsberg, Sér. chim. 27, 291–306 (1950).Google Scholar
  116. Osterhout, W. J. V.: Some aspects of selective absorption. J. Gen. Physiol. 5, 225–231 (1922).PubMedCrossRefGoogle Scholar
  117. Overstreet, R., and L. A. Dean: The availability of soil anions. Mineral nutrition of plants (ed. E. Truog), p. 79–105. Madison: University of Wisconsin Press 1951.Google Scholar
  118. Overstreet, R., and L. Jacobson: The absorption by roots of rubidium and phosphate ions at extremely small concentrations as revealed by experiments with Rb86 and P32 prepared without inert carrier. Amer. J. Bot. 33, 107–112 (1946).CrossRefGoogle Scholar
  119. Page, J. B., u. G. B. Bodman: The effect of soil physical properties on nutrient availability. Mineral nutrition of plants (ed. E. Truog), p. 133–166. Madison: University of Wisconsin Press 1951.Google Scholar
  120. Pantanelli, E.: Über Ionenaufnahme. Jb. wiss. Bot. 56, 689–733 (1915).Google Scholar
  121. Redfern, G. M.: On the absorption of ions by the roots of living plants. I. The absorption of the ions of calcium chloride by pea and maize. Ann. of. Bot. 36, 167–174 (1922).Google Scholar
  122. Robertson, R. N.: Studies in the metabolism of plant cells. I. Accumulation of chlorides by plant cells and its relation to respiration. Austral. J. Exper. Biol. a. Med. Sci. 19, 265–278 (1941).CrossRefGoogle Scholar
  123. Robertson, R. N., and J. F. Turner: The physiology of growth of apple fruits. II. Respiratory and other metabolic activities as functions of cell number and cell size in fruit development. Austral. J. Sci. Res. B 4, 92–107, (1951).Google Scholar
  124. Robertson, R. N., and J. S. Turner: Studies in the metabolism of plant cells. III. The effects of cyanide on the accumulation of potassium chloride and on respiration; the nature of the salt respiration. Austral. J. Exper. Biol. a. Med. Sci. 23, 63–73 (1945).CrossRefGoogle Scholar
  125. Robertson, R. N., and M. J. Wilkins: Studies in the metabolism of plant cells. VII. The quantitative relation between salt accumulation and salt respiration. Austral. J. Sci. Res. B 1, 17–37 (1948).Google Scholar
  126. Robertson, R. N., M. J. Wilkins, A. B. Hope and L. Nestel: Studies in the metabolism of plant cells. X. Respiratory activity and ionic relations of plant mitochondria. Austral. J. Biol. Sci. 8 164–185 (1955).Google Scholar
  127. Robertson, R. N., M. J. Wilkins and D. C. Weeks: Studies in the metabolism of plant cells. IX. The effects of 2,4-dinitrophenol on salt accumulation and salt respiration. Austral. J. Sci. Res. B 4, 248–264 (1951).Google Scholar
  128. Ross, H.: Sulfat-, Nitratreduktion und Redox potential bei Eisenmangel in höheren Pflanzen. Bodenkde u. Pflanzenernährg 8, 3 (1938).Google Scholar
  129. Sachs, J.: Text-book of botany, morphological and physiological. Oxford: University Press 1875.Google Scholar
  130. Sandström, B.: The ion absorption in roots lacking epidermis. Physiol. Plantarum (Copenh.) 3, 496–505 (1950).CrossRefGoogle Scholar
  131. Saussure, N. T. de: Recherches chemique sur la végétation. Paris 1804.Google Scholar
  132. Scott-Russell, R., and R. P. Martin: A study of the absorption and utilization of phosphate by young barley plants. I. The effect of external concentration on the distribution of absorbed phosphate between roots and shoots. J. of Exper. Bot. 4, 108–127 (1953).CrossRefGoogle Scholar
  133. Scott-Russell, R., R. P. Martin and O. N. Bishop: A study of the absorption and utilization of phosphate by young barley plants. II. The effect of phosphate status and root metabolism on the distribution of absorbed phosphate between roots and shoots. J. of Exper. Bot. 4, 136–156 (1953).CrossRefGoogle Scholar
  134. A study of the absorption and utilization of phosphate by young barley plants. III. The relationship between the external concentration and the absorption of phosphate. J. of Exper. Bot. 5, 327–342 (1954).Google Scholar
  135. Sideris, C. P.: Manganese interference in the absorption and translocation of radioactive iron (Fe59) in Ananas comosus (L.) Merr. Plant Physiol. 25, 307–321 (1950).PubMedCrossRefGoogle Scholar
  136. Sideris, C. P., and H. Y. Young: Growth and chemical composition of Ananas comosus (L) Merr. in solution cultures with different iron-manganese rations. Plant Physiol. 24, 416–440 (1949).PubMedCrossRefGoogle Scholar
  137. Simon, E. W. and H. Beevers: The effect of ph on the biological activities of weak acids and bases. I. The most usual relationship between PH and activity. New Phytologist 51, 163–190 (1952).CrossRefGoogle Scholar
  138. Steemann Nielsen, E.: Passive and active ion transport during photosynthesis in water plants. Physiol. Plantarum (Copenh.) 4, 189–198 (1951).CrossRefGoogle Scholar
  139. Steinmann, E.: An electron microscope study of the lamellar structure of chloroplasts. Exper. Cell Res. 3, 367–371 (1952).CrossRefGoogle Scholar
  140. Steward, F. C.: The absorption and accumulation of solutes by living plant cells. I. Experimental conditions which determine salt absorption by storage tissue. Protoplasma 15, 29–58 (1932).CrossRefGoogle Scholar
  141. Salt accumulation in plants: A reconsideration of the role of growth and metabolism. Symposia Soc. f. Exper. Biol. 8, 367–406 (1954).Google Scholar
  142. Steward, F. C., P. Prevot and J. A. Harrison- Absorption and accumulation of rubidium bromide by barley plants. Localization in the root of cation accumulation and of transfer to the shoot. Plant Physiol. 17, 411–421 (1942).PubMedCrossRefGoogle Scholar
  143. Stiles, W.: An introduction to the principles of plant physiology. London: Methuen & Co. Ltd. 1936.Google Scholar
  144. Stiles, W., and F. Kidd: The influence of external concentration on the position of the equilibrium attained in the intake of salts by plant cells. Proc. Roy. Soc. Lond. Ser. B 90, 448–470 (1919).CrossRefGoogle Scholar
  145. Stiles, W., and A. D. Skelding: The salt relations of plant tissues. I. The absorption of potassium salts by storage tissue. Ann. of Bot., N. S. 4, 329–364 (1940a).CrossRefGoogle Scholar
  146. The salt relations of plant tissues. II. The absorption of manganese salts by storage tissue. Ann. of Bot., N. S. 4, 673–700 (1940b).Google Scholar
  147. Stout, P. R., and W. R. Meagher: Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science (Lancaster, Pa.) 108, 471–473 (1948).Google Scholar
  148. Street, H. E., M. P. Mc Gonagle and S. M. Mc Gregor: Observations on the “staling” of White’s medium by excised tomato roots. II. Iron availability. Physiol. Plantarum (Copenh.) 5, 248–276 (1952).CrossRefGoogle Scholar
  149. Stumpf, P. K.: Phosphate assimilation in higher plants. Phosphate metabolism, Vol. II (ed. W. D. Mc Elroy and B. Glass), p. 29–67. Baltimore: Johns Hopkins Press 1952.Google Scholar
  150. Sutcliffe, J. F.: The influence of internal ion concentration on potassium accumulation and salt respiration of red beet tissue. J. of Exper. Bot. 3, 59–76 (1952).CrossRefGoogle Scholar
  151. Cation absorption by non-growing plant cells. Symposia Soc. f. Exper. Biol. 8, 325–342 (1954).Google Scholar
  152. Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Progr. Biophysics a. Biophysical Chem. 3, 305–319 (1953).Google Scholar
  153. Truog, E.: Mineral nutrition of plants (ed. E. Truog), p. 23–51. Madison: University of Wisconsin Press 1951.Google Scholar
  154. Ulrich, A.: Metabolism of non-volatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Amer. j. Bot. 28, 526–537 (1941).CrossRefGoogle Scholar
  155. Metabolism of organic acids in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Amer. j. Bot. 29, 220–227 (1942).Google Scholar
  156. Vervelde, G. J.: Salt accumulation by plant roots. A study on the physical chemistry of ion uptake into and ion transport through a space with an amphoteric colloid. Wageningen: H. Veenman & Zonen 1952.Google Scholar
  157. Viets, F. G.: Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol. 19, 466–480 (1944).PubMedCrossRefGoogle Scholar
  158. Wadleigh, C. H., and L. A. Richards: Soil moisture and the mineral nutrition of plants. Mineral nutrition of plants (ed. E. Truog), p. 411–450. Madison: University of Wisconsin Press 1951.Google Scholar
  159. Wanner, H. v.: Untersuchungen über die Temperaturabhängigkeit der Salzaufnahme durch Pflanzenwurzeln. I. Die relative Größe der Temperaturkoeffizienten (Q10) von Kationen- und Anionenaufnahme. Ber. schweiz. bot. Ges. 58, 123–130 (1948).Google Scholar
  160. Untersuchungen über die Temperaturabhängigkeit der Salzaufnahme durch Pflanzenwurzeln. II. Die Temperaturkoeffizienten von Kationen- und Anionenaufnahme in Abhängigkeit von der Salzkonzentration. Ber. schweiz. bot. Ges. 58, 383–390 (1948).Google Scholar
  161. Histologische und physiologische Gradienten in der Wurzelspitze. Ber. schweiz. bot. Ges. 60, 404–412 (1950).Google Scholar
  162. Weeks, D. C., and R. N. Robertson: Studies in the metabolism of plant cells. VIII. Dependence of salt accumulation and salt respiration upon the cytochrome system. Austral. j. Sci. Res. B 3, 487–500 (1950).Google Scholar
  163. Wiebe, H. H., and P. j. Kramer: Translocation of radioactive isotopes from various regions of roots of barley seedlings. Plant Physiol. 29, 342–348 (1954).PubMedCrossRefGoogle Scholar
  164. Wiersum, L. K.: Transfer of solutes across the young root. Rec. Trav. bot. néerl. 41, 1–79 (1947).Google Scholar
  165. Wolken, J. J., and F. A. Schwertz: Chlorophyll monolayers in chloroplasts. J. Gen. Physiol. 37, 111–120 (1953).PubMedCrossRefGoogle Scholar
  166. Wood, J. G., and P. M. Sibly: The distribution of zinc in oat plants. Austral. J. Sci. Res. B 3, 14–27 (1950).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin . Göttingen . Heidelberg 1958

Authors and Affiliations

  • R. N. Robertson

There are no affiliations available

Personalised recommendations