Skip to main content
  • 364 Accesses

Abstract

Soil is a heterogeneous mixture of particles of various sizes1; consequently it contains pores of different sizes and shapes. The kind of pores largely determines the water retention properties of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, F., F. J. Veihmeyer and L. N. Brown: Cotton irrigation investigations in San Joaquin Valley, California 1926 to 1935. California, Agr. Exper. Stat. Bull. 668, 1942, 3–93.

    Google Scholar 

  • Aldrich, W. W., C. L. Crawford and D. C. Moore: Leaf elongation and fruit growth of the deglet noor date in relation to soil-moisture deficiencies. J. Agric. Res. 7, 189–200 (1946).

    Google Scholar 

  • Aldrich, W. W., and R. A. Work: Preliminary report of pear tree response to variations. Proc. Amer. Soc. Hort. Sci. 29, 181–187 (1932).

    Google Scholar 

  • Effect of leaf-fruit ratio and available soil moisture in heavy clay soil upon amount of bloom of pear trees. Proc. Amer. Soc. Hort. Sci. 31, 57–74 (1934).

    Google Scholar 

  • Allmendinger, D. F., A. L. Kenworthy and E. L. Overholser: The carbon dioxide intake of apple leaves as affected by reducing the available soil water to different levels. Proc. Amer. Soc. Hort. Sci. 42, 133–140 (1943).

    CAS  Google Scholar 

  • Alway, F. J.: Some studies in the dry land regions. U.S. Dept. Agric., Bur. Plant Ind. Bull. 130, 1918, 1–212.

    Google Scholar 

  • Alway, F. J., and G. R. Mc Dole: Relation of movement of water in a soil to its hygroscopicity and initial moistness. J. Agric. Res. 10, 391–428 (1917).

    Google Scholar 

  • Alway, F. J., and J. R. Neller: A field study of the influence of organic matter upon the water-holding capacity of a silt-loam soil. J. Agric. Res. 16, 263–277 (1919).

    CAS  Google Scholar 

  • Alway, F. J., and J. C. Russel: Use of the moisture equivalent for the indirect determination of the hydroscopic coefficient. J. Agric. Res. 6, 833–846 (1916).

    CAS  Google Scholar 

  • Anderson, A. B. C., and N. E. Edlefsen: (1) The electrical capacity of the 2-electrode plaster of paris block as an indicator of soil-moisture content. Soil Sci. 54 35–46 (1942).

    Article  CAS  Google Scholar 

  • (2) Laboratory study of the response of 2- and 4-electrode plaster of paris blocks as soil-moisture content indicators. Soil. Sci. 53, 413–428 (1942).

    Google Scholar 

  • (3) Volume freezing point relations observed with new dilatometer technique. Soil Sci. 54, 221–232 (1942).

    Google Scholar 

  • Anderson, D. B., and T. Kerr: A note on the growth behaviour of cotton bolls. Plant Physiol. 18, 261–269 (1943).

    Article  PubMed  CAS  Google Scholar 

  • Ayers, A. D., and R. B. Campbell: Freezing point of water in a soil as related to salt and moisture content of the soil. Soil Sci. 72, 201–205 (1951).

    Article  Google Scholar 

  • Ayers, A. D., C. H. Wadleigh and O. C. Magistad: The interrelations of salt concentrations and soil moisture content with the growth of beans. J. Amer. Soc. Agron. 35, 796–810 (1943).

    Article  CAS  Google Scholar 

  • Beach, G. A.: Carnation yield and quality as affected by watering and phosphate. Proc. Amer. Soc. Hort. Sci. 37, 1022–1026 (1939).

    Google Scholar 

  • Beck, W. A.: Osmotic pressure, osmotic value and suction tension. Plant Physiol. 3, 413–440 (1928).

    Article  PubMed  CAS  Google Scholar 

  • Beckett, S. H., H. F. Blaney and C. A. Taylor: Irrigation water requirement studies of citrus and avocado trees in San Diego County, California 1926 and 1927. California Agric. Exper. Stat., Bull. 489, 1930.

    Google Scholar 

  • Beckett, S. H., and M. R. Huberty: Irrigation investigations with field crops at Davis and Delhi, California 1909–1925. California Agric., Exper. Stat. Bull. 450, 1928, 1–24.

    Google Scholar 

  • Beckett, S. H., and R. D. Robertson: The economical irrigation of alfalfa in Sacramento Valley, California. California Agric. Exper. Stat. Bull. 280, 1917.

    Google Scholar 

  • Bodman, G. B., and P. R. Day: Freezing points of a group of California soils and their extracted clays. Soil Sci. 55, 225–246 (1943).

    Article  CAS  Google Scholar 

  • Bodman, G. B., and A. J. Mahmud: The use of the moisture equivalent in the textural classification of soils. Soil Sci. 33, 363–374 (1932).

    Article  CAS  Google Scholar 

  • Borden, R. J.: Agriculture. Report of the committee in charge of the Exper. Sta. Proc. 67. Ann. Meeting, Hawaiian Sugar Planters Assoc. 1947, 43–63. 1948.

    Google Scholar 

  • Botelho da Costa, J. V., and J. Alves: The determination of the moisture equivalent by the silt suction method and the shifting of the pF curve of stored soil samples. J. Agric. Sci. 32, 294–297 (1942).

    Article  Google Scholar 

  • Bouyoucos, G. J.: Effect of temperature on some of the important physical properties in soils. Michigan Agric., Exper. Stat. Techn. Bull. 22, 1915.

    Google Scholar 

  • Classification and measurement of the different forms of water in the soil by means of the dilatometer method. Michigan Agric., Exper. Stat. Techn. Bull. 36, 1917.

    Google Scholar 

  • A new simple and rapid method for determining the moisture equivalent of soils, and the role of soil colloids on this moisture equivalent. Soil Sci. 27, 233–241 (1929).

    Google Scholar 

  • A comparison between the suction method and the centrifuge method for determining the moisture equivalent of soils. Soil Sci. 40, 165–171 (1935).

    Google Scholar 

  • The dilatometer method as an indirect means of determining the permanent wilting point of soils. Soil Sci. 42, 217–223 (1936).

    Google Scholar 

  • Bouyoucos, G. J., and M. M. Mc Cool: The freezing point method as a new means of measuring the concentration of the soil solution directly in the soil. Michigan Agric., Exper. Stat. Techn. Bull. 24, 1916.

    Google Scholar 

  • Bouyoucos, G. J., and A. M. Mick: An electrical resistance method for the continuous measurement of soil moisture under field conditions. Michigan Agric., Exper. Stat. Techn. Bull. 172, 1940.

    Google Scholar 

  • Bovie, W. T.: The effect of adding salts to the soil on the amount of non-available water. Torrey Bot. Club, Bull. 37, 1910, 273–292.

    Article  Google Scholar 

  • Boynton, D., and E. F. Savage: Soils in relation to fruit growing in New York, XIII- Seasonal fluctuations of soil moisture in some important New York orchard soil types. Cornell Univ. Exper. Stat. Bull. 706, 1938.

    Google Scholar 

  • Brawand, H., and H. Kohnke: Microclimate and water vapor exchange at the soil surface. Proc Soil Sci. 16, 195–198 (1952).

    Article  Google Scholar 

  • Breazeale, J. F.: Maintenance of moisture equilibrium and nutrition of plants at and below the wilting percentage. Arizona Agric., Exper. Stat. Techn. Bull. 29, 1930, 137–177.

    Google Scholar 

  • Briggs, L. J.: Electrical instruments for determining the moisture, temperature, and soluble salt content of soils. U.S. Dept. Agric., Div. Soils Bull. 15, 1899.

    Google Scholar 

  • Briggs, L. J., and J. W. Mc Lane: The moisture equivalent of soils. U.S. Dept. Agric., Bur. Soils Bull. 45, 1907.

    Google Scholar 

  • Briggs, L. J., and H. L. Shantz: The wilting coefficient for different plants and its indirect determination. U.S. Dept. Agric., Bur. Plant Ind. Bull. 230, 1912.

    Google Scholar 

  • Brown, W. H.: The relation of evaporation to the water content of the soil at the time of wilt. Plant World 15, 121–134 (1912).

    Google Scholar 

  • Broyer, T. C.: The movement of material into plants. Part I. Bot. Review 13, 1–58. Part II. 13, 125–167 (1947).

    Article  CAS  Google Scholar 

  • Buckingham, E.: Studies on the movement of soil moisture. U.S. Dept. Agric., Bur. Soils Bull. 38, 1907.

    Google Scholar 

  • Burns, G. P.: Studies in tolerance of New England forest trees. V. Relation of the moisture content of the soil to the sensitivenss of the chloroplast to light. Vermont Agric., Exper. Stat. Bull. 257, 1926.

    Google Scholar 

  • Burr, W. W.: The storage and use of soil moisture. Nebraska Agric., Exper. Stat. Res. Bull. 5, 1914.

    Google Scholar 

  • Burr, W. W., and J. C. Russee: Report of certain investigations on the central Nebraska supplement al irrigation project. Nebr. Dept. Publ. Wks. Bien. Rep. 1923–24, 15, 198–240 (1925).

    Google Scholar 

  • Caldwell, J. S.: The relation of environmental conditions to the phenomenon of permanent wilting in plants. Physiologic. Res. 1, 1–56 (1913).

    CAS  Google Scholar 

  • Call, L. E., and M. C. Sewell: The soil mulch. J. Amer. Soc Agron. 9, 49–61 (1917).

    Article  CAS  Google Scholar 

  • Cameron, F. K.: The soil solution. Chemical Pub. Co., Easton, Pa. 1911.

    Google Scholar 

  • Chace, E. M., C. P. Wilson and C. G. Church: The composition of California lemons. U.S. Dept. Agric., Bull. 993, 1921.

    Google Scholar 

  • Childs, E. C.: The transport of water through heavy clay soils. III. J. Agric. Sci. 26, 527–545 (1936).

    Article  CAS  Google Scholar 

  • Clements, H. F.: Managing the production of sugar cane. Reports of the Hawaiian Sugar Tech., 6. Ann. Meeting 1948.

    Google Scholar 

  • Cole, J. S., and O. R. Mathews: Subsoil moisture under semiarid conditions. U.S. Dept. Agric., Techn. Bull. 637, 1939.

    Google Scholar 

  • Colman, E. A.: The dependence of field capacity upon the depth of wetting of field soils. Soil Sci. 58, 43–50 (1944).

    Article  CAS  Google Scholar 

  • Contiad, J. P., and F. J. Veihmeyer: Root development and soil moisture. Hilgardia 4, 113–134 (1929).

    Google Scholar 

  • Crowther, F.: Studies in growth analysis of the cotton plant under irrigation in the Sudan. Ann. of Bot. 48, 877–913 (1934).

    CAS  Google Scholar 

  • Cullinan, F. P., and J. R. Weinberger: Studies on the influence of soil moisture on growth of fruit and stomatal behavior of Elberta peaches. Proc. Amer. Soc Hort. Sci. 29, 28–33 (1932).

    Google Scholar 

  • Curry, A. S.: Results of irrigation treatments on Acala cotton grown in the Mesilla Valley, New Mexico. New Mexico Agric., Exper. Stat. Bull. 220, 1934.

    Google Scholar 

  • Cfrtis, O. F., and H. T. Scofield: A comparison of osmotic concentration of supplying and receiving tissues and its bearing on the Münch hypothesis of the translocation mechanism. Amer. J. Bot. 20, 502–512 (1933).

    Article  Google Scholar 

  • Cykler, J. F.: Effect of variations in available soil water on yield and quality of potatoes. Agric. Engng. 27, 363–366 (1946).

    Google Scholar 

  • Effect of variations in soil water on yield and quality of potatoes. Agric. Engng. 28, 353 (1947).

    Google Scholar 

  • Daubenmire, R. F., and H. E. Charter: Behavior of woody desert legumes at the wilting percentage of the soil. Bot. Gaz. 103, 762–770 (1942).

    Article  Google Scholar 

  • Davidson, A. I., C., and R. K. Schofield: Measurement of the suction of soil water by Portland stone absorbers calibrated by a new method for determining vapour pressures near to saturation. J. Agric. Sci 32, 413–426 (1942).

    Article  CAS  Google Scholar 

  • Davis, C. H.: Absorption of soil moisture by maize roots. Bot. Gaz. 101, 791–805 (1940).

    Article  Google Scholar 

  • Response of Cyperus rotundus L. to five moisture levels. Plant Physiol. 17, 311–316 (1942).

    Google Scholar 

  • Davis, W. E., and C. S. Slater: A direct weighing method for sequent measurements of soil moisture under field conditions. J. Amer. Soc. Agron. 34, 285–287 (1942).

    Article  CAS  Google Scholar 

  • Day, P. R.: The moisture potential of soils. Soil Sci. 54, 391–400 (1942).

    Article  CAS  Google Scholar 

  • Dittmer, H. J.: A quantitative study of roots and root hairs of a winter rye plant (Secale cereale). Amer. J. Bot. 24, 417–420 (1937).

    Article  Google Scholar 

  • A comparative study of the subterranean members of three field grasses. Science (Lancaster, Pa.) 88, 482 (1938).

    Google Scholar 

  • Doneen, L. D.: Some soil-moisture conditions in relation to growth and nutrition of the sugar-beet plant. Ann. Amer. Soc. Sugar- Beet Techn. 1942, 9.

    Google Scholar 

  • Doneen, L. D., and D. W. Henderson: Soil conditions affecting infiltration of water and root development of crop plants. Proc. Amer. Soc Sugar- Beet Techn. 1952, 214–223.

    Google Scholar 

  • Doneen, L. D., D. R. Porter and J. H. Mac Gillivray: Irrigation studies with watermelons. Proc Amer. Soc. Hort. Sci. 37, 821–824 (1939).

    Google Scholar 

  • Duncan, W. H.: Wilting coefficient and wilting percentage of three forest soils of the Duke Forest. Soil Sci. 48, 413–420 (1939).

    Article  CAS  Google Scholar 

  • Eaton, F. M., and D. R. Ergle: Carbohydrate accumulation in the cotton plant at low moisture levels. Plant Physiol. 23, 169–187 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Edlefsen, N. E.: A glass wool cell for measuring the aqueous vapor pressure of soils. Rev. Sci. Instrum. 4, 345–346 (1933).

    Article  CAS  Google Scholar 

  • A new method of measuring the aqueous vapor pressure of soils. Soil Sci. 38, 29–35 (1934).

    Google Scholar 

  • Some thermodynamics of aspects of the use of soil moisture by plants. Trans. Amer. Geophysic. Union 22, 917–940 (1941).

    Google Scholar 

  • Edlefsen, N. E., and A. B. C. Anderson: The four-electrode resistance method for measuring soil moisture content under field conditions. Soil Sci. 51, 367–376 (1941).

    Article  CAS  Google Scholar 

  • Thermodynamics of soil moisture. Hilgardia 15, 31–298 (1943).

    Google Scholar 

  • Edlefsen, N. E., A. B. C. Anderson and W. B. Marcum: Field study of the response of the electrical resistance of 2- and 4-electrode plaster of paris blocks to variations in soil moisture. Soil Sci. 54, 275–279 (1942).

    Article  CAS  Google Scholar 

  • Edlefsen, N. E., and G. B. Bodman: Field measurements of water transport through a silt loam soil. Amer. Soc. Agron. 33, 713–731 (1941).

    Article  Google Scholar 

  • Edlefsen, N. E., and W. O. Smith: The determination of moisture in undisturbed soil. Proc. Amer. Soc. Soil Sci. 8, 112–115 (1944).

    Article  CAS  Google Scholar 

  • Esselen, D. J.: Citrus irrigation practices, with special reference to soil moisture studies in two orchards in the Eastern Transvaal. Union South Africa, Agric. a. Forestry Sci. Bull. 159, 1937.

    Google Scholar 

  • Federovsky, D. V.: Dependence of the wilting coefficient on the kind of plant and the osmotic pressure of the soil solution. Pochvovedenie 612–621 (Russian), Soils a. Fert. Abst. No. 406-12, 85 (1948).

    Google Scholar 

  • Feustel, I. C., and H. G. Byers: The comparative moisture absorbing and moisture retaining capacities of peat and soil mixtures. U.S. Dept. Agric Techn. Bull. 552, 1936.

    Google Scholar 

  • Finch, A. H., and C. W. van Horn: The moisture relations of pecan leaves. Science (Lancaster, Pa.) 83, 260 (1936).

    CAS  Google Scholar 

  • Fisher, E. A.: The freezing of water in capillary systems, a critical discussion. J. Physic. Chem. 28, 36–67 (1924).

    Article  Google Scholar 

  • Foote, H. W., and B. Saxton: The effect of freezing on certain inorganic hydrogels. J. Amer. Chem. Soc. 38, 588–608 (1916).

    Article  CAS  Google Scholar 

  • (1) The effect of freezing in certain inorganic hydrogels. Part II. J. Amer. Chem. Soc. 39, 1103–1125 (1917).

    Google Scholar 

  • (2) The freezing of water absorbed in lamp blacks. J. Amer. Chem. Soc. 39, 627–630 (1917).

    Google Scholar 

  • Fowells, H. A., and B. M. Kirk: Availability of soil moisture to Ponderosa pine. J. Forestry 436, 01–604 (1945).

    Google Scholar 

  • Fowler, L. W., and C. B. Lipman: Optimum moisture conditions for young lemon trees on a loam soil. Univ. Calif. Publ. Agric. Sci. 3, 25–36 (1917).

    Google Scholar 

  • Furr, J. R., and E. S. Degman: Relation of moisture supply to stomatal behavior of the apple. Proc. Amer. Soc. Hort. Sci. 28, 547–551 (1931).

    Google Scholar 

  • Ferr, J. R., and J. R. Magness: Preliminary report on relation of soil moisture to stomatal activity and fruit growth of apples. Proc. Amer. Soc. Hort. Sci. 27, 212–218 (1930).

    Google Scholar 

  • Furr, J. R., and J. O. Reeve: Range of soil-moisture percentage through which plants undergo permanent wilting in some soils from semiarid irrigated areas. J. Agric. Res. 71, 149–170 (1945).

    CAS  Google Scholar 

  • Furr, J. R., and C. A. Taylor: Growth of lemon fruits in relation to moisture content of the soil. U.S. Dep. Agric., Techn. Bull. 640, 1939.

    Google Scholar 

  • Gardner, W.: The capillary potential and its relation to soil-moisture constants. Soil Sci. 10, 357–359 (1920).

    Article  CAS  Google Scholar 

  • The role of pF in the dynamics of soil moisture. Trans. Amer. Geophysic. Union 25, 699–712 (1944).

    Google Scholar 

  • Gradmann, H.: Untersuchungen über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. I. Jb. wiss. Bot. 69, 1–100 (1928).

    Google Scholar 

  • Gurr, C. G., T. J. Marshall and J. T. Hutton: Movement of water in soil due to a temperature gradient. Soil Sci. 74, 335–345 (1952).

    Article  CAS  Google Scholar 

  • Haddock, J. L., and O. J. Kelley: Interrelation of moisture, spacing and fertility to sugar-beet production. Proc. Amer. Soc. Sugar- Beet Techn. 1948, 378–396.

    Google Scholar 

  • Haines, W. B.: Studies on the physical properties of soils. J. Agric. Sci. 17, 264–290 (1927).

    Article  CAS  Google Scholar 

  • Studies in the physical properties of soils. J. Agric. Sci. 20, 97–116 (1930).

    Google Scholar 

  • Hall, A. D.: The soil. New York: E. P. Dutton & Co. 1910.

    Google Scholar 

  • Halma, F. F.: (1) Some phases in the water relation of citrus. Proc. Amer. Soc. Hort. Sci. 31, 108–109 (1934).

    Google Scholar 

  • (2) Trunk growth and the water relation in leaves of citrus. Proc. Amer. Soc Hort. Sci. 32, 273–276 (1934).

    Google Scholar 

  • Harley, C. P., and M. P. Masure: Studies on the interrelation of leaf area, soil moisture, and nitrogen to fruit growth and fruit bud formation in the apple. Proc. Washington State Hort. Assoc. 1932, 212–216.

    Google Scholar 

  • Haynes, J. L.: The effect of availability of soil moisture upon vegetative growth and water use in com. J. Amer. Soc. Agron. 40, 385–395 (1948).

    Article  Google Scholar 

  • Henderson, D. W.: Effect of salinity on moisture content and freezing point depression of soil at permanent wilting of plants. Soil Sci. 72, 207–217 (1951).

    Article  Google Scholar 

  • Hendrickson, A. H.: Certain water relations of the genus Prunus. Hilgardia 1, 479–524 (1926).

    Google Scholar 

  • Hendrickson, A. H., and F. J. Veihmeyer: Irrigation experiments with peaches in California. California Agric., Exper. Stat. Bull. 479, 1929.

    Google Scholar 

  • Influence of dry soil on root extension. Plant Physiol. 6, 567–576 (1931).

    Google Scholar 

  • Irrigation experiments with prunes. California Agric., Exper. Stat. Bull. 573 1934.

    Google Scholar 

  • The irrigation of pears on a clay adobe soil. Proc Amer. Soc. Hort. Sci. 34, 224–226 (1937).

    Google Scholar 

  • Moisture distribution in soil in containers. Plant Physiol. 16, 821–826 (1941).

    Google Scholar 

  • (1) Readily available soil moisture and sizes of fruit. Proc. Amer. Soc. Hort. Sci. 40, 13–18 (1942).

    Google Scholar 

  • (2) Irrigation experiments with pears and apples. California Agric., Exper. Stat. Bull. 667, 1942.

    Google Scholar 

  • Some factors affecting the quality of dried prunes. Proc. Amer. Soc. Hort. Sci. 44, 205–210 (1944).

    Google Scholar 

  • (1) Some effects of irrigation on the interrelations of growth, yields and drying ratios of French prunes. Proc. Amer. Soe. Hort. Sci. 46, 187–190 (1945).

    Google Scholar 

  • (2) Permanent wilting percentages of soils obtained from field and laboratory trials. Plant Physiol. 20, 517–539 (1945).

    Google Scholar 

  • Growth of walnut trees as affected by irrigation and nitrogen. Plant Physiol. 25, 567–572 (1950).

    Google Scholar 

  • Irrigation experiments with grapes. California Agric., Exper. Stat. Bull. 728, 1951.

    Google Scholar 

  • Prune orchard irrigation. California Agric. 6, 10–12 (1952).

    Google Scholar 

  • Hilgard, E. W., and R. H. Loughridge: Endurance of drought in soils of the arid regions. California Agric., Exper. Stat. Rep. 1897–1898, 1897, 40–64.

    Google Scholar 

  • Hoagland, D. R.: The freezing point method as an index of variations in the soil solution due to season and crop growth. J. Agric. Res. 12, 369–395 (1918).

    CAS  Google Scholar 

  • Hunter, A. S., and O. J. Kelley: The extension of plant roots into dry soil. Plant Physiol. 21, 445–451 (1946).

    Article  PubMed  CAS  Google Scholar 

  • Jensen, C.A.: Some relations between citrus fruit growth and soil moisture and climatic conditions. California Citrograph 4, 119–131 (1919).

    Google Scholar 

  • Joseph, A. F., and F. J. Martin: The moisture equivalent of heavy soils. J. Agric. Sci. 13, 49–59 (1923).

    Article  CAS  Google Scholar 

  • Kausch, W.: Saugkraft und Wassernachleitung im Boden als physiologische Faktoren. Unter besonderer Berücksichtigung des Tensiometers. Planta (Berl.) 45, 217–263 (1955).

    Article  CAS  Google Scholar 

  • Kearney, T. H.: Wilthig coefficient for plants in alkali soils. U.S. Dep. Agric., Bur. Plant Ind. Cir. 1913, 109.

    Google Scholar 

  • Kelley, O. J., et al.: A comparison of methods of measuring soil moisture under field conditions. J. Amer. Soc. Agron. 38, 759–784 (1946).

    Article  CAS  Google Scholar 

  • Kenworthy, A. L.: Soil moisture and growth of apple trees. Proc Amer. Soe. Hort. Sci. 54, 29–39 (1949).

    CAS  Google Scholar 

  • King, C. J.: Water-stress behavior of pima cotton in Arizona. U.S. Dep. Agric. Bull. 1018, 1922.

    Google Scholar 

  • King, F. H.: Soil management. New York: Orange Judd Co. 1914.

    Google Scholar 

  • Kittredge, J.: Report of committee on transpiration and evaporation, 1940/41. Trans. Amer. Geophysic Union 22, 906–915 (1941).

    Google Scholar 

  • Koketsu, R. J.: Variation of the transpiring power of leaves as related to the wilting of plants. J. Dept. Agric., Kyushu Imperial Univ. 1, 241–260 (1926).

    Google Scholar 

  • Variation of the water content of leaves as related to the wilting of plants. J. Dept. Agric., Kyushu Imperial Univ. 2, 93–116 (1928).

    Google Scholar 

  • Kokin, S.: The influence of moisture in soils and the velocity of intake of water by the root system. Trans. of the Bot. Gardens, Leningrad (Translated title) 1925.

    Google Scholar 

  • Kozlowski, T. T.: Light and water in relation to growth and competition of Piedmont forest tree species. Ecolog. Monogr. 19, 207–231 (1949).

    Article  Google Scholar 

  • Kramer, P. J.: An estimate of the volume of water made available by root extension. Plant Physiol. 15, 743–747 (1940).

    Article  PubMed  CAS  Google Scholar 

  • Lane, R. D., and A. L. Mc Comb: Wilting and soil moisture depletion by tree seedlings and grass. J. Forestry 46, 344–349 (1948).

    Google Scholar 

  • Lebedeff, A. F.: Methods of determining the maximum moisture holding capacity of soils. Proc. First Internat. Congr. Soil Sci. 1, 551–563 (1928).

    Google Scholar 

  • Lewis, M. R., R. A. Work and W. W. Aldrich: Studies of the irrigation of pear orchards on heavy soil near Medford, Oregon. U.S. Dep. Agric., Techn. Bull. 432, 1934.

    Google Scholar 

  • Influence of different quantities of moisture in a heavy soil on rate of growth of pears. Plant Physiol. 10, 309–323 (1935).

    Google Scholar 

  • Linford, L. B.: Soil moisture phenomena in a saturated atmosphere. Soil Sci. 29, 227–235 (1930).

    Article  CAS  Google Scholar 

  • Livingston, B. E.: The relation of desert plants to soil moisture and to evaporation. Carnegie Instn. Publ. 50, 1–78 (1906).

    Google Scholar 

  • Plant water relations. Quart. Rev. Biol. 2, 494–515 (1927).

    Google Scholar 

  • Livingston, B. E., and R. Koketsu: The water supplying power of the soil as related to the wilting of plants. Soil Sci. 9, 469–485 (1920).

    Article  CAS  Google Scholar 

  • Livingston, B. E., and W. L. Norem: Water-supplying power and water-absorbing power of soils as related to wilting of wheat and coleus in greenhouse pot cultures. Soil Sci. 43, 177–204 (1937).

    Article  CAS  Google Scholar 

  • Loomis, W. E., and L. M. Ewan: Hydrotropic response of roots in soil. Bot. Gaz. 97, 728–743 (1936).

    Article  Google Scholar 

  • Loijstalot, A. J.: Influence of soil-moisture conditions on apparent photosynthesis and transpiration of pecan leaves. J. Agric Res. 71, 519–532 (1945).

    Google Scholar 

  • Magistad, O. C., and J. F. Breazeale: Plant and soil relations at and below the wilting percentage. Arizona Agric. Exper. Stat. Techn. Bull. 25, 1929.

    Google Scholar 

  • Magness, J. R., E. S. Degman and J. R. Furr: Soil moisture and irrigation investigations in Eastern apple orchards. U.S. Dep. Agric., Techn. Bull. 491, 1935.

    Google Scholar 

  • Marr, J. C.: The use and duty of water in the Salt River Valley. Arizona Agric. Exper. Stat. Bull. 120, 1927.

    Google Scholar 

  • Martin, E. V.: Effect of soil moisture on growth and transpiration in Helianthus annuus. Plant Physiol. 15, 449–466 (1940).

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. D., and H. F. Loomis: Summer irrigation of Pima Cotton. J. Agric Res. 23, 927–946 (1923).

    Google Scholar 

  • Mathews, O. R., and E. C. Chilcott: Storage of water in soils and its utilization by spring wheat. U.S. Dep. Agric. Bull. 1139, 1923.

    Google Scholar 

  • Maximov, N. A., and A. S. Kruzilin: Influence of irrigation on the development of the root system of spring wheat plants. Plant Physiol. 11, 457–460 (1936).

    Article  PubMed  CAS  Google Scholar 

  • Mendel, K.: Orange leaf transpiration under orchard conditions. Part II. Soil moisture content decreasing. Palestine J. Bot., Rehovot Ser. 5, 59–85 (1945).

    Google Scholar 

  • Meyer, B. S.: The water relations of plant cells. Bot. Review 4, 531–547 (1938).

    Article  CAS  Google Scholar 

  • Mc Corkle, W. H.: Determination of soil moisture by the method of multiple electrodes. Texas Agric., Exper. Stat. Bull. 426, 1931.

    Google Scholar 

  • Mc Dermott, J. J.: The effect of the moisture content of the soil upon the rate of exudation. Amer. J. Bot. 32, 570–574 (1945).

    Article  Google Scholar 

  • Mc Dowell, C. H.: Growing cotton under irrigation in the Wichita Valley of Texas. Texas Agric. Exper. Stat. Bull. 494, 1934.

    Google Scholar 

  • Middleton, H. E.: The moisture equivalent in relation to the mechanical analysis of soils. Soil Sci. 9, 159–167 (1920).

    Article  CAS  Google Scholar 

  • Miller, E. C.: Comparative study of root systems and leaf area of corn and sorghums. J. Agric. Res. 6, 311–331 (1916).

    Google Scholar 

  • Moore, D. C., and W. W. Aldrich: Leaf and fruit growth of the date in relation to moisture in a saline soil. Proc. Amer. Soc. Hort. Sci. 36, 216–222 (1938).

    Google Scholar 

  • Oppenheimer, H. R., and D. L. Elze: Irrigation of citrus trees according to physiological indicators. The Jewish Agency for Palestine, Agric. Res. Stat. Rehovot, Bull. 31, 1941.

    Google Scholar 

  • Overly, F. L., E. L. Overholser and I. A. Haut: The relation of soil moisture and spray applications to stomatal behaviour and growth of Jonathan apples. Proc. Amer. Soc. Hort. Sci. 28, 543–546 (1931).

    Google Scholar 

  • Pinckney, R. M. and F. J. Alway: Reliability of the proposed suction method of determining the moisture equivalent of soils. Soil Sci. 48, 403–411 (1939).

    Article  CAS  Google Scholar 

  • Piper, A. M.: Notes on the relation between the moisture equivalent and the specific retention of waterbearing materials. Trans. Amer. Geophysic. Union 14, 481–491 (1933).

    Google Scholar 

  • Proebsting, E. L.: The effect of cover crops on nitrogen and field capacity on an orchard soil. Proc. Amer. Soc Hort. Sci. 35, 302–305 (1937).

    Google Scholar 

  • Puri, A. N.: A critical study of the hygroscopic coefficient of soil. J. Agric. Sci. 15, 272–283 (1925).

    Article  CAS  Google Scholar 

  • Richards, L. A.: The usefulness of capillary potential to soil moisture and plant investigators. J. Agric Res. 37, 719–742 (1928).

    CAS  Google Scholar 

  • Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931).

    Google Scholar 

  • Soil moisture tensiometer materials and construction. Soil Sci. 53, 241–248 (1942).

    Google Scholar 

  • Pressure membrane apparatus — construction and its use. Agric. Engng. 28, 451–454 (1947).

    Google Scholar 

  • Richards, L. A., and C. H. Wadleigh: Soil water and plant growth. Chap. 3, pp. 73–251, in Soil Physical Conditions and Plant Growth, Amer. Soc Agron. Monographs, 2. New York: Academic Press Inc. 1952.

    Google Scholar 

  • Richards, L. A., and L. R. Weaver: The sorption- block soil moisture meter and hysteresis effects related to its operation. J. Amer. Soc Agron. 35, 1002–1011 (1943).

    Article  CAS  Google Scholar 

  • Moisture retention of some irrigated soils as related to soil-moisture tension. J. Agrie. Res. 69, 215–235 (1944).

    Google Scholar 

  • Richards, S. J., R. M. Hagan and T. M. Mc Calla: Soil temperature and plant growth. Chap. 5, pp. 303–460, in Soil Physical Conditions and Plant Growth, Amer. Soc. Agron. Monographs, 2. New York: Academic Press Inc. 1952.

    Google Scholar 

  • Romell, L. A.: Mecanisme de l’aeration du sol. Ann. Agronomiques 5, 375–384 (1935).

    Google Scholar 

  • Rotmistrov, V. G.: Sushshnost Zasukhi po Dannym Odesskago Opytnago Polia Odessa, Russia. Russian ed., 1–66, 1911. (English translation.) The nature of drought according to the evidence of the Odessa Experiment Station. Sta. M. of L. and A., Dept. of Agr., Odessa 1913.

    Google Scholar 

  • Russee, J. C., and W. W. Burr: Studies on the moisture equivalent of soils. Soil Sci. 19, 251–266 (1925).

    Article  Google Scholar 

  • Schneider, G. W., and N. F. Childers: Influence of soil moisture on photosynthesis, respiration, and transpiration of apple leaves. Plant Physiol. 16, 565–583 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Scofield, C. S., and C. C. Wright: Water relations of Yakima Valley soil. J. Agric. Res. 37, 65–85 (1928).

    CAS  Google Scholar 

  • Schofield, R. K.: The pF of the water in soil. 3. Internat. Congr. Scil Sci. Trans. 2, 37–48 (1935).

    CAS  Google Scholar 

  • Schofield, R. K., and J. V. Botelho da Costa: The determination of the pF at permanent wilting and at the moisture equivalent by the freezing point method. 3. Internat. Congr. Soil Sci. Trans. 1, 6–10 (1935).

    CAS  Google Scholar 

  • The measurement of pF in soil by freezing point. J. Agric. Sci. 28. 644–653 (1938).

    Google Scholar 

  • Shaw, B. T., and L. D. Baver: An electrothermal method for following moisture changes of the soil in situ. Proc. Amer. Soc. Soil Sci. 4, 78–83 (1940).

    Article  Google Scholar 

  • Heat conductivity as an index of soil moisture. J. Amer. Soe. Agron. 31, 886–891 (1939).

    Google Scholar 

  • SHAW, H. R.: Studies on the response of cane growth to moisture. Rep. of the Assoc. Hawaiian Sugar Tech., 9. Ann. Meeting, p. 127–147, 1930.

    Google Scholar 

  • Shaw, H. R., and J. A. Swezey: Scientific irrigation management. Hawaiian Sugar Planters’ Assoc., Agric. a. Chem. Bull. 52, 1937.

    Google Scholar 

  • Shive, J. W., and B. E. Livingston: The relation of atmospheric evaporating power to soil-moisture content at permanent wilting of plants. Plant World 17, 81–121 (1914).

    Google Scholar 

  • Shantz, H. L.: Drought resistance and soil moisture. Ecology 8, 145–157 (1927).

    Article  Google Scholar 

  • Shull, C. A.: Measurement of the surface forces in soils. Bot. Gaz. 62, 1–31 (1916).

    Article  Google Scholar 

  • Absorption of water and the forces involved. J. Soe. Agron. 22, 459–471 (1930).

    Google Scholar 

  • Slater, C. S., and J. C. Bryant: Comparison of four methods of soil moisture measurement. Soil Sci. 61, 131–155 (1946).

    Article  CAS  Google Scholar 

  • Smith, A.: Relation of mechanical analysis to the moisture equivalent of soils. Soil Sci. 4, 471–476 (1917).

    Article  CAS  Google Scholar 

  • Smith, W. O.: The final distribution of retained liquid in an ideal uniform soil. Physics 4, 425–438 (1933).

    Article  Google Scholar 

  • Thermal conductivities in moist soils. Soil Sci. Soc. Amer. Proc. 4, 32–40 (1939).

    Google Scholar 

  • Thermal transfer of moisture in soils. Trans. Amer. Geophysic. Union 24, 511–523 (1943).

    Google Scholar 

  • The effect of soil physical conditions on moisture constants in the upper capillary range. Soil Sci. 58, 1–16 (1944).

    Google Scholar 

  • Stern, K.: Pflanzenthermodynamik. Berlin: Springer 1933.

    Google Scholar 

  • Stiles, W.: The suction pressure of the plant cell. Biochemic. J. 16, 727–728 (1922).

    CAS  Google Scholar 

  • Swezey, J. A.: Rainfall evaluation as an aid to irrigation interval control. Hawaiian Planters Rec. 46, 75–100 (1942).

    Google Scholar 

  • Swezey, J. A., and H. A. Wadsworth: Irrigation interval control as an aid in lowering production costs. Hawaiian Planter Rec. 44, 49–68 (1940).

    Google Scholar 

  • Taylor, C. A., H. F. Blaney and W. W. Mc Laughlin: The wilting- range in certain soils and the ultimate wilting- point. Trans. Amer. Geophysic. Union 15, 436–444 (1934).

    Google Scholar 

  • Taylor, C. A., and J. R. Furr: The apparent growth rate of lemon fruits as an index of the moisture supply of the tree. Proc. Amer. Soc. Hort. Sci. 32, 70 (1935).

    Google Scholar 

  • (1) The effect of decreasing soil moisture supply on size of lemon fruits. Proc. Amer. Soc. Hort. Sci. 33. 71–81 (1936).

    Google Scholar 

  • (2) Effects of intervals between irrigations on lemon growth. California Citrograph 22, 76 (1936).

    Google Scholar 

  • Use of soil–moisture and fruit-growth records for checking irrigation practices in citrus orchards. U.S. Dept. Agric. Cir. 1937, 426.

    Google Scholar 

  • Thoday, D.: On turgescence and the absorption of water by the cells of plants. New Phytologist 17, 108–113 (1918).

    Article  Google Scholar 

  • Thomas, E. E.: Studies on the irrigation of citrus groves. California Agric., Exper. Stat. Bull. 341, 1922.

    Google Scholar 

  • Thomas, J. E.: An investigation of the problem of salt accumulation on a Mallec soil in the Murray Valley irrigation area. Aust. Council Soc. a. Industr. Res. Bull. 128, 1939.

    Google Scholar 

  • Thomas, M. D.: Aqueous vapor pressure of soils. Soil Sci. 11, 209–234 (1921).

    Article  Google Scholar 

  • Thut, H. F.: The relative humidity gradient of stomatal transpiration. Amer. J. Bot. 26, 315–319 (1939).

    Article  Google Scholar 

  • Upchurch, R. P.: The effect of soil-moisture content on the rate of photosynthesis and respiration in Ladino clover. Ph. D. thesis, Univ. of California 1952.

    Google Scholar 

  • Ursprung, A., and G. Blum: Zur Methode der Saugkraftmessung. Ber. Dtsch. bot. Ges. 34, 525–539 (1916).

    Google Scholar 

  • Vaile, R. S.: A survey of orchard practices in the citrus industry of Southern California. California Agric. Exper. Stat. Bull. 374, 1924.

    Google Scholar 

  • Veihmeyer, F. J.: Some factors affecting the irrigation requirements of deciduous orchards. Hilgardia 2 (1927).

    Google Scholar 

  • Usefulness of soil moisture functions and constants. Trans. Amer. Geophysic. Union l5, 302–312 (1934).

    Google Scholar 

  • Evaporation from soils and transpiration. Trans. Amer. Geophysic. Union 19, 612–619 (1938).

    Google Scholar 

  • The validity of the assumption that it is possible to produce different moisture percentages in field soils. Trans. Amer. Geophysic. Union 20, 543–545 (1939).

    Google Scholar 

  • Veihmeyer, F. J., and F. A. Brooks: Measurements of accumulative evaporation from bare soils. Trans. Amer. Geophysic. Union 35, 601–607 (1954).

    Google Scholar 

  • Veihmeyer, F. J., and N. E. Edlefsen: Water in soils and its movement. Union Internatl. de Geodesique et Geophys. Assoc. Internat. d’Hydrologie Sci., Bull. 22, 355–365 (1936).

    Google Scholar 

  • Interpretation of soil-moisture problems by means of energy changes. Trans. Amer. Geophysic. Union 18, 302–318 (1937).

    Google Scholar 

  • Veihmeyer, F. J., N. E. Edlefsen and A. H. Hendrickson: Use of tensiometers in measuring availability of water to plants. Plant Physiol. 18, 66–78 (1943).

    Article  PubMed  CAS  Google Scholar 

  • Veihmeyer, F. J., and A. H. Hendrickson: (1) The relation of soil moisture to cultivation and plant growth. 1. Internat. Congr. of Soil Sci. Proc. a. Papers 3, 498–513 (1928).

    Google Scholar 

  • (2) Soil moisture and permanent wilting of plants. Plant Physiol. 3, 355–357 (1928).

    Google Scholar 

  • The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 32, 181–193 (1931).

    Google Scholar 

  • Some plant and soil-moisture relations. Amer. Soil Surv. Assoc. Bull. 15, 76–80 (1934).

    Google Scholar 

  • Moisture distribution in soil in containers. Plant Physiol. 16, 821–826 (1941).

    Google Scholar 

  • Soil density as a factor in determining the permanent wilting percentage. Soil Sci. 62, 451–456 (1946).

    Google Scholar 

  • (1) The permanent wilting percentage as a reference for the measurement of soil moisture. Trans. Amer. Geophysic. Union 29, 887–896 (1948).

    Google Scholar 

  • (2) Soil density and root penetration. Soil Sci. 65, 487–493 (1948).

    Google Scholar 

  • Methods of measuring field capacity and permanent wilting percentage of soils. Soil Sci. 68, 75–94 (1949).

    Google Scholar 

  • Soil moisture in relation to plant growth. Annual Rev. Plant Physiol. 1, 285–304 (1950).

    Google Scholar 

  • The effect of soil moisture on deciduous fruit trees. Report 13. Internat. Hort. Congr. 1, 306–319 (1952).

    Google Scholar 

  • Does transpiration decrease as soil moisture decreases ? Trans. Amer. Geophysic. Union 1955.

    Google Scholar 

  • Veihmeyer, F. J., and A. H. Holland: Irrigation and cultivation of lettuce. Monterey Bay region experiments. California Agric. Exper. Stat. Bull. 711, 1949.

    Google Scholar 

  • Veihmeyer, F. J., O. W. Isrealsen and J. P. Conrad: The moisture equivalent as influenced by the amount of soil used in its determination. California Agric. Exper. Stat. Techn. Paper 16, 1–65 (1924).

    Google Scholar 

  • Veihmeyer, F. J., J. Oserkowsky and K. B. Tester: Some factors affecting the moisture equivalent of soils. 1. Internat. Congr. of Soil Sci. Proc. a. Papers 1, 512–534 (1928).

    Google Scholar 

  • Volk, G. M.: Significance of moisture translocation from soil zones of low moisture tension to zone of high moisture tension by plant roots. J. Amer. Soc. Agron. 39, 93–106 (1947).

    Article  CAS  Google Scholar 

  • Wadleigh, C. H., and A. D. Ayers: Growth and biochemical composition of bean plants as conditioned by soil moisture tension and salt concentration. Plant Physiol. 20, 106–132 (1945).

    Article  PubMed  CAS  Google Scholar 

  • Wadleigh, C. H., H. G. Gauch and D. G. Strong: Root penetration and moisture extraction in saline soils by crop plants. Soil Sci. 63, 341–349 (1947).

    Article  CAS  Google Scholar 

  • Wadleigh, C. H., and H. G. Gafch: Rate of leaf elongation as affected by the intensity of the total soil moisture stress. Plant Physiol. 23, 485–495 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth, H. A.: Soil moisture characteristics. Pineapple News 3, 151–157 (1929).

    Google Scholar 

  • Further observations upon the nature of capillary rise through soils. Soil Sci. 32, 417–433 (1931).

    Google Scholar 

  • Further observations upon the relation between cane elongation and soil moisture. Hawaiian Planters Rec. 36, 423–433 (1932).

    Google Scholar 

  • Soil moisture and the sugar cane plant. Hawaiian Planters Rec. 38, 111–119 (1934).

    Google Scholar 

  • Some observations on the fluctuations of moisture content in the sugar cane plant. Hawaiian Planters Rec. 45, 121–130 (1941).

    Google Scholar 

  • An interpretation of the moisture content-surface force curve for soils. Soil Sci. 58, 225–242 (1944).

    Google Scholar 

  • Walter, H.: Plasmaquellung und Wachstum. Z. Bot. 16, 353–417 (1924).

    Google Scholar 

  • Weaver, J. E.: Root development in the grassland formation. Carnegie Inst. Publ. 1920, 292.

    Google Scholar 

  • Root development of field crops. New York: McGraw-Hill Book Co. 1926.

    Google Scholar 

  • Weaver, J. E., F. C. Jean and J. W. Crist: Development and activities of roots of crop plants. Carnegie Inst. Publ. 316, 1–117 (1922).

    Google Scholar 

  • Webster, J. F., and B. Wiswanath: Further studies of alkali soils in Iraq. Mesopotamia Dept. Agric. Mem. 5, 1–46 (1921).

    Google Scholar 

  • Went, F. W.: Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Amer. J. Bot. 31, 597–619 (1944).

    Article  CAS  Google Scholar 

  • Whitney, M., F. D. Gardner and L. J. Briggs: An electrical method of determining the moisture content of arable soils. U.S. Dept. Agric. Div. Soils Bull. 6, 1897.

    Google Scholar 

  • Widtsoe, J. A.: Principles of irrigation practice. New York: Macmillan & Co. 1914.

    Book  Google Scholar 

  • Wilson, J. D., and B. E. Livingston: Wilting and withering of grasses in greenhouse culture as related to the water-supplying power of the soil. Plant Physiol. 7, 1–34 (1932).

    Article  PubMed  CAS  Google Scholar 

  • Winterkorn, H. F.: Fundamental similarities between electro-osmotic and thermal osmotic phenomena. Highway Res. Bur. Proc. 27, 443–455 (1947).

    CAS  Google Scholar 

  • Woodruff, C. M.: Soil moisture and plant growth in relation to pF. Proc. Amer. Soc. Soil Sci. 5, 36–41 (1940).

    Article  CAS  Google Scholar 

  • Discussion of “Does transpiration decrease as the soil moisture decreases?” by F. J. VEIHMEYER a. A. H. HENDRICKSON. Trans. Amer. Geophysic. Union 1955.

    Google Scholar 

  • Work, R. A., and M. R. Lewis: The relation of soil moisture to pear tree wilting in a heavy clay soil. J. Amer. Soc. Agron. 28, 124–134 (1936).

    Article  Google Scholar 

  • Young, H. J.: Soil mulch. Nebraska Agric. Exper. Stat. Rep. 1911, 124.

    Google Scholar 

  • Zunker, F.: Das Verhalten des Bodens zum Wasser. In Handbuch der Bodenlehre, Bd. 6, S. 66–120. 1930.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Veihmeyer, F.J. (1956). Soil moisture. In: Adriani, M.J., et al. Pflanze und Wasser / Water Relations of Plants. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94678-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94678-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94679-0

  • Online ISBN: 978-3-642-94678-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics