Histology and development of the root

  • C. R. Stocking
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 3)

Abstract

Early in the development of an angiosperm or gymnospern embryo the apical meristems of both the embryonic epicotyl and radicle become active. The delimitation of the embryonic root thus begins rapidly, e.g. within 7 to 8 days
Fig. 1

Transection of young alfalfa root showing an early stage in the differentiation of the vascular cylinder (×l00). (Slide by Parke.)

after fertilization, the embryo of Phlox Drummondii develops a root cap covering an apical region of cylindrical root meristem (Miller and Wetmore 1945). Although variations among species exist in the extent of differentiation of tissues in the embryonic root and in the exact ontogeny of these tissues (Guttenberg 1940; Allen 1947 a, b; Esau 1954), a typical radicle may be described as a cylindrical organ of meristematic cells with a conical cap covering the tip. Interior to this conical root cap, the radicle is composed of (1) the apical meristem, (2) the central procambial core surrounded by the meristematic cortical cylinder or ground meristem, and (3) the outer protoderm. The protoderm, the outermost meristem, gives rise to the epidermis (Fig. 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G. S.: Embryogeny and the development of the apical meristem of Pseudotsuga II. Late embryogeny. Amer. J. Bot. 34, 73–80 (1947a).CrossRefGoogle Scholar
  2. Embryogeny and the development of the apical meristem of Pseudotsuga III. Development of the apical meristems. Amer. J. Bot. 34, 204–121 (1947b).Google Scholar
  3. Arber, A.: Monocotyledons. A morphological study. Cambridge: Cambridge University Press 1925.Google Scholar
  4. Arisz, W. H., R. J. Heeder and R. van Nie: Analysis of the exudation process in tomato plants. J. of Exper. Bot. 2, 257–297 (1951).CrossRefGoogle Scholar
  5. Arnold, A.: Über den Funktionsmechanismus der Endodermiszellen der Wurzeln. Protoplasma (Wien) 41, 189–211 (1952).CrossRefGoogle Scholar
  6. Brumfield, R. T.: Cell growth and division in living root meristems. Amer. J. Bot. 29, 533–543 (1942).CrossRefGoogle Scholar
  7. Bryant, A. E.: Comparison of anatomical and histological differences between roots of barley grown in aerated and non-aerated culture solution. Plant Physiol. 9, 389–391 (1934a).CrossRefGoogle Scholar
  8. A demonstration of the connection of the protoplasts of the endodermal cells with the Casparian strips in the roots of barley. New Phytologist 33, 231 (1934b).Google Scholar
  9. Cormack, R. G. H.: Investigations on the development of root hairs. New Phytologist 34, 30–54 (1935).CrossRefGoogle Scholar
  10. The effect of environmental factors on the development of root hairs in Phleum pratense and Sporobolus cryptandrus. Amer. J. Bot. 31, 443–449 (1944).Google Scholar
  11. The development of root hairs in angiosperms. Bot. Review 15, 583–612 (1949).Google Scholar
  12. On the growth of root hairs. Science (Lancaster, Pa.) 119, 615–616 (1954).Google Scholar
  13. Crafts, A. S., and T. C. Broyer: Migration of salts and water into xylem of the roots of higher plants. Amer. J. Bot. 25, 529–535 (1938).CrossRefGoogle Scholar
  14. Ekdahl, I.: Studies on the growth and the osmotic conditions of root hairs. Symbolae hot. Upsalienses 11 (6), 1–83 (1953).Google Scholar
  15. Esaf, K.: Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13, 175–226 (1940).Google Scholar
  16. Origin and development of primary vascular tissues in seed plants. Bot. Review 9, 125–206 (1943 a).Google Scholar
  17. Vascular differentiation in the pear root. Hilgardia 15, 299–324 (1943b).Google Scholar
  18. Plant Anatomy. New York, K Y.: John Wiley & Sons, Inc. 1953.Google Scholar
  19. Anatomical differentiation in shoot and root axes. In: W. E. Loomis (Editor). Growth and Differentiation in Plants. Ames, Iowa: The Iowa State College Press 1954.Google Scholar
  20. Frey-Wyssling, A., and K. Mühlethaler: Über den Feinbau der Zellwand von Wurzelhaaren. Mikroskopie, Vienna 4, 257–266 (1949).Google Scholar
  21. Bau und Funktion der Wurzelhaare. Schweiz. landwirt. Mh. 28, 212–219 (1950).Google Scholar
  22. Guttenberg, H. V.: Der primäre Bau der Angiospermenwurzel. In: K. Linsbauer (Editor), Handbuch der Pflanzenanatomie, Bd. 8, Liefg 39. Berlin: Gebrüder Bomträger. 1940.Google Scholar
  23. Der primäre Bau der Gymnospermenwurzel. In: K. Linsbatjer (Editor), Handbuch der Pflanzenanatomie, Bd. 8, Liefg 41. Berlin: Gebrüder Bomträger 1941.Google Scholar
  24. Die physiologischen Scheiden. In: K. Linsbauer (Editor), Handbuch der Pflanzenanatomie, Bd. 5, Liefg 42. Berlin: Gebrüder Bomträger 1943.Google Scholar
  25. Haberlandt, G.: Über die Lage des Kemes in sich entwickelnden Zellen. Ber. dtsch. bot. Ges. 5, 205–212 (1887).Google Scholar
  26. Hayward, H. E., and E. M. Long: The anatomy of the seedling and the roots of the Valencia orange. Dep. Bull. U. S. Dep. Agric. No. 786, 1942.Google Scholar
  27. Heimsch, Charles: Development of vascular tissues in barley roots. Amer. J. Bot. 38, 523–537 (1951).CrossRefGoogle Scholar
  28. Kerr, T.: Growth and structure of the primary wall. In: F. Skoog (Editor), Plant Growth Substances. Madison, Wisconsin: Univ. of Wisconsin Press 1951.Google Scholar
  29. Kramer, P. J.: Absorption of water through suberized roots of trees. Plant Physiol. 21, 37–41 (1946).PubMedCrossRefGoogle Scholar
  30. Plant and Soil Water Relationships. New York, N. Y.: McGraw Hill Book Co., Inc. 1949.Google Scholar
  31. Lundegårdh, H.: The growth of root hairs. Ark. Bot. (Stockh.), Ser. A No 5, 33, 1–19 (1946).Google Scholar
  32. The translocation of salts and water through wheat roots. Physiol. Plantarum (Copenh.) 3, 103–151 (1950).Google Scholar
  33. Mc Dougall, W. B.: Thick walled root hairs of Gleditsia and related genera. Amer. J. Bot. 8, 171–175 (1921).CrossRefGoogle Scholar
  34. Miller, H. A., and R. H. Wetmore: Studies m the developmental anatomy of Phlox Drummondii Hook. I. The embryo. Amer. J. Bot. 32, 588–599 (1945).Google Scholar
  35. Studies in the developmental anatomy of Phlox Drummondii Hook. II. The seedling. Amer. J. Bot. 32, 628–634 (1945).Google Scholar
  36. O’Kelley, J. C., and P. H. Carr: An electron micrographic study of the cell walls of elongating cotton fibers, root hairs and pollen tubes. Amer. J. Bot. 41, 261–264 (1954).CrossRefGoogle Scholar
  37. Priestley, J. H.: The mechanism of root pressure. New Phytologist 19, 189–200 (1920).CrossRefGoogle Scholar
  38. Priestley, J. H., and E. E. North: Physiological studies in plant anatomy. III. The structure of the endodermis in relation to its function. New Phytologist 21, 113–139 (1922).CrossRefGoogle Scholar
  39. Priestley, J. H., and R. M. Tupper-Corey: Physiological studies in plant anatomy. IV. The water relations of the plant growing point. New Phytologist 21, 210–229 (1922).CrossRefGoogle Scholar
  40. Rimbach, A.: Die Verbreitung der Wurzelverkürzung im Pflanzenreich. Ber. dtsch. bot. Ges. 47, 22–31 (1929).Google Scholar
  41. Rurz de Lavison, J. de: DU mode de pénétration de quelques sels dans la plante vivante. Rôle de l’endoderme. Rev. gén. Bot. 22, 225–241 (1910).Google Scholar
  42. Schnee, L.: Bandplasmolyse der Endodermiszellen von Cobaea scandens. Protoplasma (Wien) 26, 97–99 (1936).CrossRefGoogle Scholar
  43. Scott, L. I.: The root as an absorbing organ IL The delimitation of the absorbing zone. New Phytologist 27, 141–174 (1928).Google Scholar
  44. Scott, L. I., and J. H. Priestley: The root as an absorbing organ I. A reconsideration of the entry of water and salts in the absorbing region. New Phytologist 27, 125–140 (1928).Google Scholar
  45. Strugger, S.: Fluoreszenzmikroskopische Untersuchungen über Speicherung und Wanderung des Fluoreszeinkaliums in pflanzlichen Geweben. Flora (Jena) 132, 253–304 (1938).Google Scholar
  46. Thoday, D., and A. J. Davey: Contractile roots. II. On the mechanism of root contraction in Oxalis incarnata. Ann. Bot. 46, 993–1005 (1932).Google Scholar
  47. Van Fleet, D. S.: A comparison of histochemical and anatomical characteristics of the hypodermis with the endodermis in vascular plants. Amer. J. Bot. 37, 721–725 (1950).CrossRefGoogle Scholar
  48. Whitaker, E. S.: Root hairs and secondary thickening in the Compositae. Bot. Gaz. 76, 30–59 (1923).CrossRefGoogle Scholar
  49. Williams, B. C.: The structure of the meristematic root tip and origin of the primary tissues in the root of the vascular plants. Amer. J. Bot. 34, 455–462 (1947).CrossRefGoogle Scholar
  50. Ziegenspeck, H.: Vorkommen und Bedeutung von Endodermen und Endodermoiden bei oberirdischen Organen der Phaneragamen im Lichte der Fluoroskopie. Mikroskopie (Wien) 7, 202–208 (1952).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • C. R. Stocking

There are no affiliations available

Personalised recommendations