Advertisement

Osmotic pressure or osmotic value

  • C. R. Stocking
Chapter
  • 60 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)

Abstract

The presence of solutes in solutions or in living cells lowers the activity and the diffusion pressure (Meyer 1945) of the water molecules present. Unless this effect on the diffusion pressure of water is altered in the cell by some other factor such as an increased hydrostatic pressure or turgor pressure, the total concentration of dissolved particles present (molecules, ions, and even colloidal particles) is an index of the water absorbing power of the cell. Usually, however, the presence of solutes is only one of several factors affecting the diffusion pressure of water in a cell. The ability of a cell to absorb water from an adjacent cell or surrounding solution depends upon the magnitudes of all forces affecting the diffusion pressure of water both within the cell and in the adjacent medium1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Andel, O. M. van: Determinations of the osmotic value of exudation sap by means of the thermo-electric method of Baldes and Johnson. Proc. Kon. Ned. Akad. v. Wetensch. 55, 40–48 (1952).Google Scholar
  2. Barger, G.: Eine mikroskopische Methode zur Bestimmung des Molekulargewichtes. In Abderhalden’s Handbuch der biologischen Arbeitsmethoden, Abt. III, Teil a 1, H. 4, S. 729. 1924.Google Scholar
  3. Brauner, L.: Das kleine pflanzenphysiologische Praktikum. II. Die physikalische Chemie der Pflanzenzelle. Jena: Gustav Fischer 1932.Google Scholar
  4. Brauner, L., and M. Brauner: The relations between water intake and oxybiosis in living plant-tissues. II. The tensility of the cell wall. Rev. Fac. Sci. Univ. Istanbul, Sér. B 8, 30–75 (1943).Google Scholar
  5. Berkeley, Earl of, and E. G. J. Hartley: Further determinations of direct osmbtic pressures. Proc. Roy. Soc. Lond., Ser. A 92, 477–492 (1916).CrossRefGoogle Scholar
  6. Broyer, T. C.: Methods of tissue preparation for analysis in physiological studies with plants. Bot. Rev. 5, 531–545 (1939).CrossRefGoogle Scholar
  7. Buhmann, A.: Kritische Untersuchungen über vergleichende plasmolytische und kryoskopische Bestimmungen des osmotischen Wertes bei Pflanzen. Protoplasma (Berl.) 23, 579–612 (1935).CrossRefGoogle Scholar
  8. Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).PubMedCrossRefGoogle Scholar
  9. Crafts, A. S.: Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol. 7, 183–225 (1932).CrossRefGoogle Scholar
  10. Crafts, A. S., H. B. Currier and C. R. Stocking: Water in the physiology of plants. Waltham, Mass.: Chronica Botanica Co. 1949.Google Scholar
  11. Curtis, O., and D. G. Clark: An introduction to plant physiology. New York: McGraw-Hill Co. 1950.Google Scholar
  12. Dixon, H. H., and W. R. G. Atkins: Variations in the osmotic pressure of the leaves of Hedera helix. Notes Bot. School Trinity Col. Dublin 2, 103–110 (1912).Google Scholar
  13. Osmotic pressures in plants. I. Methods of extracting sap from plant organs. Sci. Proc. Roy. Dublin Soc. 13, 422–433 (1913).Google Scholar
  14. Osmotic pressures in plants. VI. On the composition of the sap of the conducting tracts of trees at different levels and at different seasons of the year. Sci. Proc. Roy. Dublin Soc. 15, 51–62 (1916).Google Scholar
  15. Drabble, E., and H. Drabble: The relation between the osmotic strength of cell sap in plants and their physical environment. Biochemic. J. 2, 117–132 (1907).Google Scholar
  16. Dutrochet, R. J. H.: Nouvelles observations sur l’endosmose, et sur la cause de ce double phénomène. Ann. de Chim. (Phys.) 35, 393–400 (1827).Google Scholar
  17. Eaton, F. M.: Toxicity and accumulation of chloride and sulfate salts in plants. J. Agricult. Res. 64, 357–399 (1942).Google Scholar
  18. Findlay, A.: Osmotic pressure. London: Longmans, Green & Co. 1919.Google Scholar
  19. Fitting, H.: Die Wasserversorgung und die osmotischen Druckverhältnisse der Wüstenpflanzen. Z. Bot. 3, 209–275 (1911).Google Scholar
  20. Frazer, J. C. W., and R. T. Myrick: The osmotic pressure of sucrose Solutions at 30°. J. Amer. Chem. Soc. 38, 1907–1922 (1916).CrossRefGoogle Scholar
  21. Fuchs, W. H.: Der Anteil des Zuckers am osmotischen Wert bei Weizen. Planta (Berl.) 23, 340–348 (1935).CrossRefGoogle Scholar
  22. Gail, F. W.: Osmotic pressure of cell sap and its possible relation to winter killing and leaf fall. Bot. Gaz. 81, 434–445 (1926).CrossRefGoogle Scholar
  23. Gasser, R.: Zur Kenntnis der Änderung der Saugkraft bei Grenzplasmolyse durch Wasserunter- und -Überbilanz. Ber. Schweiz, bot. Ges. 52, 47–110 (1942).Google Scholar
  24. Gortner, R. A., and J. A. Harris: Notes on the technique of the determination of the depression of the freezing point of vegetable saps. Plant World 17, 49–53 (1914).Google Scholar
  25. Halket, A. C.: On various methods for determining osmotic pressures. New Phytologist 12, 164–176 (1913).CrossRefGoogle Scholar
  26. Halma, F. F., and A. R. Haas: Effect of sunlight on sap concentration of citrus leaves. Bot. Gaz. 86, 102–107 (1928).CrossRefGoogle Scholar
  27. Harris, J. A.: The physico-chemical properties of plant saps in relation to phytogeography. Minneapolis, Minnesota: Univ. Minnesota Press 1934.Google Scholar
  28. Harris, J. A., R. A. Gortner and J. V. Lawrence: The relationship between the osmotic concentration of leaf sap and height of leaf insertion in trees. Torreya 44, 267–286 (1917).Google Scholar
  29. Harris, J. A., and J.V.Lawrence: The cryoscopic constants of expressed vegetable saps as related to local environmental conditions in the Arizona deserts. Physiol. Res. 2, 1–49 (1916a).Google Scholar
  30. On the osmotic pressure of the tissue fluids of Jamaican Loranthaceae parasitic on various hosts. Amer. J. Bot. 3, 438–455 (1916b).Google Scholar
  31. Harris, J. A., J. V. Lawrence and R. A. Gortner: The osmotic concentration and electrical conductivity of the tissue fluids of ligneous and herbaceous plants. J. Physic. Chem. 25, 122–146 (1921).CrossRefGoogle Scholar
  32. Herrick, E. M.: Seasonal and diurnal variations in the osmotic values and suction tension values in the aerial portions of Ambrosia trifida. Amer. J. Bot. 20, 18–34 (1933).CrossRefGoogle Scholar
  33. Heyn, A. N. J.: The physiology of cell elongation. Bot. Rev. 6, 515–574 (1940).CrossRefGoogle Scholar
  34. Hildebrand, J. H.: Osmotic pressure. Science (Lancaster, Pa.) 121, 116–119 (1955).Google Scholar
  35. Hitchcock, D. E.: Selected principles of physical chemistry. In: Physical chemistry of cells and tissues. R. Höber, editor. Philadelphia, Pa.: The Blakiston Co. 1945.Google Scholar
  36. Höber, R.: Physical chemistry of cells and tissues. Philadelphia, Pa.: The Blakiston Co. 1945.Google Scholar
  37. Hygen, G., and J. Kjennerud: Osmotic relations during cell expansion. Physiol. Plant. 5, 171–182 (1952).CrossRefGoogle Scholar
  38. Iljin, V.: Über die Austrocknungsfähigkeit des lebenden Protoplasmas der vegetativen Pflanzenzellen. Jb. wiss. Bot. 66, 947–964 (1927).Google Scholar
  39. Iljin, W. S.: Die Ursachen der Resistenz von Pflanzenzellen gegen Austrocknen. Protoplasma (Berl.) 10, 379–414 (1930).CrossRefGoogle Scholar
  40. Zusammensetzung der Salze in der Pflanze auf verschiedenen Standorten. Kalkpflanzen. Beih. bot. Zbl. 50, 95–137 (1932).Google Scholar
  41. Knodel, H.: Eine Methodik zur Bestimmung der stofflichen Grundlagen des osmotischen Wertes von Pflanzensäften. Planta (Berl.) 28, 704–715 (1938).CrossRefGoogle Scholar
  42. Über die Abhängigkeit des osmotischen Wertes von der Saugkraft des Bodens. Jb. wiss. Bot. 87, 557–564 (1939).Google Scholar
  43. Korstian, C. F.: Density of the cell sap in relation to environmental conditions in the Wasatch Mountains of Utah. J. Agricult. Res. 28, 845–909 (1924).Google Scholar
  44. Küster, E.: Die Pflanzenzelle. Jena: Gustav Fischer 1935.Google Scholar
  45. Kurimoto, K., H. Takada and S. Nagai: Physiology of Metasequoia glyptostroboides and related species of conifers. I. Osmotic value and salt composition of leaf saps. J. Inst. Polytech. 5, D 55–65 (1954).Google Scholar
  46. Lewis, F. J., and G. M. Tuttle: Osmotic properties of some plant cells at low temperatures. Ann. Bot. Lond. 34, 405–416 (1920).Google Scholar
  47. Lewis, G. N.: The osmotic pressure of concentrated solutions, and the laws of the perfect solution. J. Amer. Chem. Soc. 30, 668–683 (1908).CrossRefGoogle Scholar
  48. Lutman, B. F.: Osmotic pressures in the potato plant at various stages of growth. Amer. J. Bot. 6, 181–202 (1919).CrossRefGoogle Scholar
  49. Magistad, O. C.: Plant growth on saline and alkali soils. Bot. Rev. 11, 181–230 (1945).CrossRefGoogle Scholar
  50. Magistad, O. C., and R. F. Reitemeier: Soil solution concentrations at the wilting point and their correlation with plant growth. Soil Sci. 55, 351–360 (1943).CrossRefGoogle Scholar
  51. Magistad, O. C., and E. Truog: The influence of fertilizers in protecting corn against freezing. J. Amer. Soc. Agron. 17, 517–526 (1925).CrossRefGoogle Scholar
  52. Marsh, F. L.: Water content and osmotic pressure of certain prairie plants in relation to environment. Nebraska Univ. Stud. 40, No 3, 3–44 (1940).Google Scholar
  53. Maximov, N. A.: The plant in relation to water, R. H. Yapp, Editor. London: Allen & Univin 1929.Google Scholar
  54. Mc Cool, M. M., and M. D. Weldon: The effect of soil type and fertilizer on the composition of expressed sap of plants. J. Amer. Soc. Agron. 20, 778–793 (1928).CrossRefGoogle Scholar
  55. Meyer, B. S.: Studies on the physical properties of leaves and leaf saps. Ohio J. Sci. 27, 263–288 (1927).Google Scholar
  56. Seasonal variations in the physical and chemical properties of the leaves of the pitch pine, with especial reference to cold resistance. Amer. J. Bot. 15, 449–472 (1928).Google Scholar
  57. A critical evaluation of the terminology of diffusion phenomena. Plant Physiol. 20, 142–164 (1945).Google Scholar
  58. Meyer, B. S., and D. B. Anderson: Plant physiology. New York: D. van Nostrand Co. 1952.Google Scholar
  59. Morse, H. N.: The osmotic pressure of aqueous solutions. Carnegie Inst. Wash. Publ. 198, 1–222 (1914).Google Scholar
  60. Nollet, M. l’Abbé: Recherches sur les causes du Bouillonnement des liquides. Acad. Roy. Sci. Mém. 1748, 57–104.Google Scholar
  61. Overbeek, J. van: Water uptake by excised root systems of the tomato due to non-osmotic forces. Amer. J. Bot. 29, 677–683 (1942).CrossRefGoogle Scholar
  62. Pfeffer, W. F. P.: Osmotische Untersuchungen. Leipzig: W. Engelmann 1877.Google Scholar
  63. Pisek, A.: Frosthärte und Zusammensetzung des Zellsaftes bei Rhododendron ferrugineum, Pinns cembra und Picea excelsa. Protoplasma (Berl.) 39, 129–146 (1950).CrossRefGoogle Scholar
  64. Pittius, G.: Über die stofflichen Grundlagen des osmotischen Druckes bei Hedera helix und Ilex aquifolium. Bot. Archiv 37, 43–46 (1934).Google Scholar
  65. Pringsheim, E. G.: Untersuchungen über Turgordehnung und Membranbeschaffenheit. Jb. wiss. Bot. 74, 749–796 (1931).Google Scholar
  66. Sakazaki, N., Y. Ihara, Y. Tachibana, S. Nagai and H. Takada: Physiology of Metasequoia glyptostroboides and related species of conifers. II. Comparative studies of salt tolerance. J. Inst. Polytech. Osaka City Univ. D 5, 67–78 (1954).Google Scholar
  67. Steiner, M.: Zum Chemismus der osmotischen Jahresschwankungen einiger immergrüner Holzgewächse. Jb. wiss. Bot. 78, 564–622 (1933).Google Scholar
  68. Die Zusammensetzung des Zellsaftes bei höheren Pflanzen in ihrer ökologischen Bedeutung. Erg. Biol. 17, 151–254 (1939).Google Scholar
  69. Stocking, C. R.: The calculation of tensions in Cucurbita pepo. Amer. J. Bot. 32, 126–134 (1945).CrossRefGoogle Scholar
  70. Stoddart, L. A.: Osmotic pressure and water content of prairie plants. Plant Physiol. 10, 661–680 (1935).PubMedCrossRefGoogle Scholar
  71. Strugger, S.: Praktikum der Zell- und Gewebephysiologie der Pflanze. Berlin: Gebrüder Bornträger 1935.Google Scholar
  72. Takada, H.: Ion accumulation and osmotic value of plants, with special reference to strand plants. J. Inst. Polytech. 5, 81–96 (1954).Google Scholar
  73. Takada, H., and S. Nagai: Notes on the rich chloride content and the osmotic pressure of Metasequoia glyptostroboides. Proc. Jap. Acad. 29, 274–278 (1953).Google Scholar
  74. Thatcher, F. S.: Osmotic and permeability relations in the nutrition of fungus parasites. Amer. J. Bot. 26, 449–458 (1939).CrossRefGoogle Scholar
  75. Further studies of the osmotic and permeability relations in parasitism. Canad. J. Res. 20, 283–311 (1942).Google Scholar
  76. Traub, M.: Experimente zur Theorie der Zellbildung und Endosmose. Arch. Anat. usw. 1867, 87–165.Google Scholar
  77. Ulmer, W.: Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie der Zirbe und Fichte. Jb. wiss. Bot. 84, 553–592 (1937).Google Scholar
  78. Ursprung, A.: Die Messung der osmotischen Zustandsgrößen pflanzlicher Zellen und Gewebe. In Abderhalden’s Handbuch der biologischen Arbeitsmethoden, Abt. XI, Teil 4, H. 7, S. 1109–1572. 1938.Google Scholar
  79. Ursprung, A., u. G. Blum: Über die Verteilung des osmotischen Wertes in der Pflanze. Ber. dtsch. bot. Ges. 34, 88–104 (1916).Google Scholar
  80. Zwei neue Saugkraft-Meßmethoden. Jb. wiss. Bot. 72, 254–334 (1930).Google Scholar
  81. Vries, H. de: Eine Methode zur Analyse der Turgorkraft. Jb. wiss. Bot. 14, 427–601 (1884).Google Scholar
  82. van’t Hoff, J. H.: Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z. physik. Chem. 1, 481–508 (1887).Google Scholar
  83. The function of osmotic pressure in the analogy between solutions and gases. Phil. Mag., Ser. V, 26, 81–105 (1888).Google Scholar
  84. Wall, R. F., and E. L. Hartman: Sand culture studies of the effects of various concentrations of added salts upon the composition of tomato plants. Proc. Amer. Soc. Horticult. Sci. 40, 460–466 (1942).Google Scholar
  85. Walter, H.: Die kryoskopische Bestimmung des osmotischen Wertes bei Pflanzen. In Abderhalden’s Handbuch der biologischen Arbeitsmethoden, Bd. XI/4, S. 353–371. 1931a.Google Scholar
  86. Die Hydratur der Pflanze. Jena: Gustav Fischer 1931b.Google Scholar
  87. Grundlagen des Tflanzenlebens, 3. Aufl., Bd. I.Google Scholar
  88. Die Hydratur und ihre Bedeutung. Stuttgart: Eugen Ulmer 1949.Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • C. R. Stocking

There are no affiliations available

Personalised recommendations