Wall and turgor pressure and tension. Diffusion pressure deficit or suction force

  • B. S. Meyer
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)


The cell-to-cell movement of water in plants, insofar as it is motivated by osmotic and imbibitional mechanisms, can be adequately interpreted only in terms of the three physically distinct quantities of osmotic pressure (OP), turgor pressure (TP), and diffusion pressure deficit (DPD). No one of these three quantities alone adequately characterizes the water relations of a plant cell insofar as they can be interpreted on the basis of a diffusional mechanism. The magnitude of all three of them must be known for the complete evaluation of the water relations of a cell.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algeus, S.: Views on turgor pressure and wall pressure. Physiol. Plantarum 4, 535–541 (1951).CrossRefGoogle Scholar
  2. Arcichovskij, V., et al.: Untersuchungen über die Saugkraft der Pflanzen, I–V. Planta (Berl.) 14, 517–565 (1931).CrossRefGoogle Scholar
  3. Askenasy, E.: Beiträge zur Erklärung des Saftsteigens. Verh. naturhist.-med. Ver. Heidelberg 5, 429–448 (1897).Google Scholar
  4. Beck, W. A.: Osmotic pressure, osmotic value, and suction tension. Plant Physiol. 3, 413–440 (1928).PubMedCrossRefGoogle Scholar
  5. Bode, H. R.: Beiträge zur Dynamik der Wasserbewegung in den Gefäßpflanzen. Jb. wiss. Bot. 62, 92–127 (1923).Google Scholar
  6. Brooks, S. C.: The standardization of osmotic pressure as a term. Science (Lancaster, Pa.) 92, 428–429 (1940).Google Scholar
  7. Brooks, S. C., and Matilda M. Brooks: The permeability of living cells. Berlin: Gebrüder Bornträger 1941.Google Scholar
  8. Broyer, T. C.: The movement of materials into plants. Part I. Osmosis and the movement of water into plants. Bot. Review 13, 1–58 (1947).CrossRefGoogle Scholar
  9. On the theoretical interpretation of turgor pressure. Plant Physiol. 25, 135–139 (1950).Google Scholar
  10. Burström, H.: A theoretical interpretation of the turgor pressure. Physiol. Plantarum 1, 57–64 (1948).CrossRefGoogle Scholar
  11. Chu, Cheen-Ren: Der Einfluß des Wassergehaltes der Blätter der Waldbäume auf ihre Lebensfähigkeit usw. Flora (Jena) 130, 384–437 (1936).Google Scholar
  12. Crafts, A. S.: Solute transport in plants. Science (Lancaster, Pa.) 90, 337–338 (1939).Google Scholar
  13. Crafts, A. S., H. B. Currier and C. R. Stocking: Water in the physiology of plants. Waltham, Massachusetts: The Chronica Botanica Co. 1949.Google Scholar
  14. Curtis, O. F.: Vapor pressure gradients, water distribution in fruits and so-called infra-red injury. Amer. J. Bot. 24, 705–710 (1937).CrossRefGoogle Scholar
  15. Curtis, O. F., and H. T. Scofield: A comparison of the osmotic concentrations of supplying and receiving tissues, and its bearing on the Münch hypothesis of the translocation mechanism. Amer. J. Bot. 20, 502–512 (1933).CrossRefGoogle Scholar
  16. Dixon, H. H.: Transpiration and the ascent of sap in plants.. London: Macmillan & Co. 1914.CrossRefGoogle Scholar
  17. Edlefsen, N. E.: Some thermodynamic aspects of the use of soil moisture by plants. Trans. Amer. Geophysic. Union, part III 22, 917–926 (1941).Google Scholar
  18. Edlefsen, N. E., and A. B. C. Anderson: Thermodynamics of soil moisture. Hilgardia 15, 31–298 (1943).Google Scholar
  19. Engmann, K. P.: Studien über die Leistungsfähigkeit der Wassergewebe sukkulenter Pflanzen. Beih. bot. Zbl. A 52, 381–414 (1934).Google Scholar
  20. Ernest, E. C. M.: Suction-pressure gradients and the measurement of suction pressure. Ann. of Bot. 45, 717–731 (1931).Google Scholar
  21. The water relations of the plant cell. J. Linnean Soc. Lond. Bot. 49, 495–502 (1934).Google Scholar
  22. Fürth, R.: On the theory of the liquid state. I. The statistical treatment of the thermodynamics of liquids by the theory of holes. Proc. Cambridge Philos. Soc. 37, 252–275 (1941).CrossRefGoogle Scholar
  23. Haines, F. M.: The relation between cell dimensions, osmotic pressure and turgor pressure. Ann. of Bot. 14, 385–394 (1950).Google Scholar
  24. An analysis of turgor and turgor pressure. Ann. of Bot. 17, 629–640 (1953).Google Scholar
  25. Haldane, J. S.: The extension of the gas laws to liquids and solids. Biochemie. J. 12, 464–498 (1918).Google Scholar
  26. Herrick, E. M.: Seasonal and diurnal variations in the osmotic values and suction tension values in the aerial portions of Ambrosia trifida. Amer. J. Bot. 20, 18–34 (1933).CrossRefGoogle Scholar
  27. Höfler, K.: Ein Schema für die osmotische Leistung der Pflanzenzelle. Ber. dtsch. bot. Ges. 38, 288–298 (1920).Google Scholar
  28. Holle, H.: Untersuchungen über Welken, Vertrocknen und Wiederstraffwerden. Flora (Jena) 108, 73–126 (1915).Google Scholar
  29. Huber, B.: Wasserumsatz und Stoffbewegungen. Fortschr. Bot. 12, 185–215 (1948).Google Scholar
  30. Hygen, G., and Julie Kjennerud: Osmotic relations during cell expansion. Physiol. Plantarum 5, 171–182 (1952).CrossRefGoogle Scholar
  31. Kerr, T., and D.B. Anderson: Osmotic quantities in growing cotton bolls. Plant Physiol. 19, 338–349 (1944).PubMedCrossRefGoogle Scholar
  32. Kramer, P. J.: The absorption of water by root systems of plants. Amer. J. Bot. 19, 148–164 (1932).CrossRefGoogle Scholar
  33. Kramer, P. J., and H. B. Currier: Water relations of plant cells and tissues. Annual Rev. Plant Physiol. 1, 265–284 (1950).CrossRefGoogle Scholar
  34. Lewis, G. N., and M. Randall: Thermodynamics. New York: McGraw-Hill Book Co. 1923.Google Scholar
  35. Levitt, J.: Toward a clearer concept of osmotic quantities in plant cells. Science (Lancaster, Pa.) 113, 228–231 (1951a).Google Scholar
  36. The osmotic equivalent and osmotic potential difference of plant cells. Physiol. Plantarum 4, 446–448 (1951b).Google Scholar
  37. Li, Tsi-Tung: Effect of climatic factors on suction force. Quart. Rev. Biol. 4, 401–414 (1929).CrossRefGoogle Scholar
  38. Mac Dougal, D. T.: Studies in tree growth by the dendrographic method. Carnegie Instn. Wash. Publ. 1936, No 462.Google Scholar
  39. Mac Dougal, D. T., J. B. Overton and G. M. Smith: The hydrostatic-pneumatic system of certain trees; movements of liquids and gases. Carnegie Instn. Wash. Publ. 1929, No 397.Google Scholar
  40. Meyer, B. S.: The water relations of plant cells. Bot. Review 4, 531–547 (1938).CrossRefGoogle Scholar
  41. A critical evaluation of the terminology of diffusion phenomena. Plant Physiol. 20, 142–164 (1945).Google Scholar
  42. Meyer, B. S., and A.M.Wallace: A comparison of two methods of determining the diffusion pressure deficit of potato tuber tissue. Amer. J. Bot. 28, 838–843 (1941).CrossRefGoogle Scholar
  43. Molz, F. J.: A study of suction force by the simplified method. I, II. Amer. J. Bot. 13, 433–501 (1926).CrossRefGoogle Scholar
  44. Oppenheimer, H. R.: Kritische Betrachtungen zu den Saugkraftmessungen von Ursprung und Blum. Ber. dtsch. bot. Ges. 48, 130–140 (1930).Google Scholar
  45. Untersuchungen zur Kritik der Saugkraftmessungen. Planta (Berl.) 18, 525–549 (1932).Google Scholar
  46. Remarks on two recent contributions concerning methods used in plant physiology. Palestine J. Bot. a. Hort. Sci. 1, 84–93 (1936).Google Scholar
  47. Renner, O.: Experimentelle Beiträge zur Kenntnis der Wasserbewegung. Flora (Jena) 103, 171–247 (1911).Google Scholar
  48. Theoretisches und Experimentelles zur Kohäsionstheorie der Wasserbewegung. Jb. wiss. Bot. 56, 617–667 (1915).Google Scholar
  49. Richards, L. A., and L. R. Weaver: Fifteen-atmosphere percentage as related to the permanent wilting percentage. Soil Sci. 56, 331–339 (1943).CrossRefGoogle Scholar
  50. Moisture retention by some irrigated soils as related to soil-moisture tension. J. Agricult. Res. 69, 215–235 (1944).Google Scholar
  51. Russell, M. B.: Soil moisture sorption curves for four Iowa soils. Proc. Soil Sci. Soc. Amer. 69, 51–54 (1939).Google Scholar
  52. Scott, A. F., D. P. Shoemaker, K. N. Tanner and J. G. Wendel: Study of the Berthelot method for detennining the tensile strength of a liquid. J. Chem. Phys. 16, 495–502 (1948).CrossRefGoogle Scholar
  53. Shull, C.A.: Suction force of plant cells. Bot. Gaz. 83, 213–214 (1927).CrossRefGoogle Scholar
  54. Absorption of water by plants and the forces involved. J. Amer. Soc. Agron. 22, 459–471 (1930)Google Scholar
  55. Atmospheric humidity and temperature in relation to the water system of plants and soils. Plant Physiol. 14, 401–422 (1939).Google Scholar
  56. Spanner, D. C.: The dynamics of cell expansion by turgor. Ann. of Bot. 16, 133–136 (1952).Google Scholar
  57. Steward, F. C., P. R. Stout and C. Preston: The balance sheet of metabolites for potato discs showing the effect of salts and dissolved oxygen on metabolism at 23° C. Plant Physiol. 15, 409–447 (1940).PubMedCrossRefGoogle Scholar
  58. Stiles, W.: The suction pressure of the plant cell. Biochemie. J. 16, 727–728 (1922).Google Scholar
  59. Stocking, C. R.: The calculation of tensions in Cucurbita pepo. Amer. J. Bot. 32, 126–134 (1945).CrossRefGoogle Scholar
  60. Tamiya, H.: Zur Theorie der Turgordehnung und über den funktionellen Zusammenhang zwischen den einzelnen osmotischen Zustandsgrößen. Cytologia 8, 542–562 (1938).CrossRefGoogle Scholar
  61. Temperely, H. N. V.: The behaviour of water under hydrostatic tension. II. Proc. Phys. Soc. London 58, 436–443 (1946).CrossRefGoogle Scholar
  62. The behaviour of water under hydrostatic tension. III. Proc. Phys. Soc. London 59, 199–208 (1947).Google Scholar
  63. Temperely, H. N. V., and L. G. Chambers: The behaviour of water under hydrostatic tension. I. Proc. Phys. Soc. London 58, 420–436 (1946).CrossRefGoogle Scholar
  64. Thoday, D.: On turgescence and the absorption of water by the cells of plants. New Phytologist 17, 108–113 (1918).CrossRefGoogle Scholar
  65. On the behaviour during drought of leaves of two cape species of Passerina, with some notes on their anatomy. Ann. of Bot. 35, 585–601 (1921).Google Scholar
  66. On the water relations of plant cells. Ann. of Bot. 14, 1–6 (1950).Google Scholar
  67. Turgor pressure and wall pressure. Ann. of Bot. 16, 129–131 (1952).Google Scholar
  68. Ursprung, A.: Über die Kohäsion des Wassers im Farnannulus. Ber. dtsch. bot. Ges. 33, 153–162 (1915).Google Scholar
  69. Zur Kenntnis der Saugkaft. VII. Eine neue vereinfachte Methode zur Messung der Saugkraft. Ber. dtsch. bot. Ges. 41, 338–343 (1923).Google Scholar
  70. Osmotic quantities of plant cells in given phases. Plant Physiol. 10, 115–133 (1935).Google Scholar
  71. Die Messung der osmotischen Zustandgrößen pflanzlicher Zellen und Gewebe. In Handbuch der biologischen Arbeitsmethoden von E. Abderhalden, Abt. XI, Teil 4, H. 7, S. 1109–1572. 1938.Google Scholar
  72. Über den Einfluß von Temperaturdifferenzen auf die Osmose. Protoplasma (Berl.) 33, 200–210 (1939).Google Scholar
  73. Ursprung, A., u. G. Blum: Zur Methode der Saugkraftmessung. Ber. dtsch. bot. Ges. 34, 525–539 (1916).Google Scholar
  74. Besprechung unserer bisherigen Saugkraftmessungen. Ber. dtsch. bot. Ges. 36, 599–618 (1918).Google Scholar
  75. Eine Methode zur Messung der Saugkraft von Hartlaub. Jb. wiss. Bot. 67, 334–348 (1927).Google Scholar
  76. Zwei neue Saugkraft-Meßmethoden. Jb. wiss. Bot. 72, 254–334 (1930).Google Scholar
  77. Vincent, R. S., and G. H. Simmonds: Examination of the Berthelot method of measuring tension in liquids. Proc. Phys. Soc. London 55, 376–382 (1943).CrossRefGoogle Scholar
  78. Vries, H. de: Eine Methode zur Analyse der Turgorkraft. Jb. wiss. Bot. 14, 427–601 (1884).Google Scholar
  79. Walter, H.: Kritisches zur Darstellung der osmotischen Zustandsgrößen in den verschiedenen Lehrbüchern der Botanik. Planta (Berl.) 40, 550–554 (1952).CrossRefGoogle Scholar
  80. Weatherley, P. E.: Some theoretical considerations of cell water relations. Ann. of Bot. 16, 137–142 (1952).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • B. S. Meyer

There are no affiliations available

Personalised recommendations