Skip to main content

Zusammenfassung

In dem vorliegenden Abschnitt sollen die Grundlagen der Wirkungen von Licht und Strahlung auf biologische Objekte, besonders auf die einzelne Zelle, dargestellt werden. Hierüber gibt es eine höchst ausgedehnte Literatur, die insgesamt zu behandeln völlig unmöglich ist. Abgesehen von den später erwähnten Originalarbeiten und Zusammenfassungen einzelner Gebiete sei auf die folgenden, grundlegenden Werke hingewiesen: Dessauer [2], Hollaender [2, 3], Lea, Nickson, Rabinowitch [1, 2], Rajewsky, Timoféeff-Ressovsky und Zimmer, Sommermeyer. Allgemeine Zusammenfassungen finden sich besonders in Butler und Randall (Progress in Biophysics and Biophysical Chemistry), sowie in den Fortschritten der Botanik (Simonis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams, W. R., and E. Pollard: Combined thermal and primary ionization effects on a bacterial virus. Arch, of Biochem. a. Biophysics 36, 311–322 (1952).

    Article  CAS  Google Scholar 

  • Aldous, J. G., and D. K. R. Stewart: The effect of ultraviolet radiation upon enzymatic activity and viability of the yeast cell. Canad. J. Med. Sci. 30, 561–570 (1952).

    CAS  Google Scholar 

  • Alexander, P.: A physicochemical method of testing the protective action of chemical compounds against the lethal effects of ionizing radiations. Brit. J. Radiol. 26, 413–416 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Allen, A. O.: The yields of free H and OH in the irradiation of water. Radiation Res. 1, 85–96 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Allen, A. O., C.J. Hochanadel, I.A. Ghormley and T. W. Davis: Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation. J. Physic. Chem. 56, 575–586 (1952).

    Article  Google Scholar 

  • Allen, E. G., M. R. Bovarnick and J. C. Snyder: The effect of irradiation with ultraviolet light on various properties of typhus rickettsiae. J. Bacter. 67, 718–723 (1954).

    CAS  Google Scholar 

  • Alper, T.: [1] Hydrogen peroxide and the indirect effect of ionizing radiations. Nature (Lond.) 162, 615–616 (1948).

    Article  CAS  Google Scholar 

  • [2] A new after-effect of X-rays on dilute aqueous suspensions of bacteriophage. Nature (Lond.) 169, 964–965 (1952).

    Google Scholar 

  • [3] The indirect inactivation of bacteriophage S 13 during and after exposure to ionizing radiations. Nature (Lond.) 169, 183–184 (1952.

    Google Scholar 

  • [4] The inactivation of free bacteriophage by irradiation and by chemical agents. J. Gen. Microbiol. 11, 313–324 (1954).

    Google Scholar 

  • Altenburg, L. S., and E. Altenburg: The lowering of the mutagenic effectiveness of ultraviolet by photoreactivating light in Drosophila. Genetics 37, 545–553 (1952).

    PubMed  CAS  Google Scholar 

  • Anderson, E. H.: Heat reactivation of ultraviolet inactivated bacteria. J. Bacter. 61, 389–394 (1951).

    CAS  Google Scholar 

  • Appleyard, R. K.: [1] The inactivation of dried hemoglobins by fast charged particles. Arch, of Biochem. a. Biophysics 35, 121–131 (1952).

    Article  CAS  Google Scholar 

  • [2] The irradiation of dried hemoglobins by fast charged particles. II. Arch, of Biochem. a. Biophysics 40, 111–126 (1952).

    Google Scholar 

  • Auerbach, C.: The chemistry of biological after-effects of ultraviolet and ionizing radiations. Brit. J. Radiol. 26, 212–213 (1953).

    Article  Google Scholar 

  • Bachofer, C. S., C. F. Ehret, S. Mayer and E. L. Powers: The influence of temperature upon the inactivation of a bacterial virus by X-rays. Proc. Nat. Acad. Sci. U.S.A. 39, 744–750 (1953).

    Article  CAS  Google Scholar 

  • Backus, G. E., and A. R. Schrank: Electrical and curvature responses of the Avena coleoptile to unilateral illumination. Plant Physiol. 27, 251–262 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Bacq, Z. M.: Die indirekte Wirkung von Röntgen- und ultravioletten Strahlen. Experientia (Basel) 7, 11–19 (1951).

    Article  CAS  Google Scholar 

  • Bacq, Z. M., u. A. Herve: Ein chemischer Schutz gegen Röntgenstrahlen. Strahlenther. 95, 215–237 (1954).

    CAS  Google Scholar 

  • Baker, W. K., and E. V. Halle: The production of dominant lethals in Drosophila by fast neutrons from cyclotron irradiation and nuclear detonations. Science (Lancaster, Pa.) 119, 46–49 (1954).

    CAS  Google Scholar 

  • Bannister, T. T.: Energy transfer between chromophore and protein in phycocyanin. Arch. of Biochem. a. Biophysics 49, 222–233 (1954).

    Article  CAS  Google Scholar 

  • Barron, E. S. G.: [1] The effect of ionizing radiations on some systems of biological importance. Symposium on Radiobiology, ed. by J. J. Nickson. New York: John Wiley & Sons Inc. 1952.

    Google Scholar 

  • [2] The effect of X-rays on systems of biological importance. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 283–313. New York u. London 1954.

    Google Scholar 

  • [3] The role of free radicals and oxygen in reactions produced by ionizing radiations. Radiation Res. 1, 109–124 (1954).

    Google Scholar 

  • Barron, E. S. G., and P. Finkelstein: Studies on the mechanism of action of ionizing radiations. X. Effect of X-rays on some physicochemical properties of proteins. Arch. of Biochem. a. Biophysics 41, 212–232 (1952).

    Article  CAS  Google Scholar 

  • Barron, E. S. G., and Ph. Johnson: Studies on the mechanism of action of ionizing radiations. XL Inactivation of yeast alcohol dehydrogenase by X-irradation. Arch. of Biochem. a. Biophysics 48, 149–153 (1954).

    Article  CAS  Google Scholar 

  • Barron, E. S. G., and S. Levine: Oxydation of alcohols by yeast alcohol dehydrogenase and by the living cell. The thiol groups of the enzyme. Arch. of Biochem. a. Biophysics 41, 175–187 (1952).

    Article  CAS  Google Scholar 

  • Barron, E. S. G., and S. L. Seki: Studies on the mechanism of action of ionizing radiations. VII. Cellular respiration, cell division and ionizing radiations. J. Gen. Physiol. 35, 865–872 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Barron, E. S. G., Ph. Johnson and A. Cobure: Effect of X-irradiation on the absorption of purines and pyrimidines. Radiation Res. 1, 410–425 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Bawden, F. C., and A. Kleczkowski: Ultraviolet injury to higher plants counteracted by visible light. Nature (Lond.) 169, 90–91 (1952).

    Article  CAS  Google Scholar 

  • Beaven, G. H., and E. R. Holiday: Ultraviolet absorption spectra of proteins and amino acids. Adv. Protein Chem. 7, 319–386 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Berger, H., F. L. Haas, O. Wyss and W. S. Stone: Effect of sodium azide on radiation damage and photoreactivation. J. Bacter. 65, 538–543 (1953).

    CAS  Google Scholar 

  • Bernstein, M. H.: Deoxyribonucleoproteins of cell nuclei: Sensitivity to X-rays. Nature (Lond.) 174, 463 (1954).

    Article  CAS  Google Scholar 

  • Beth, K.: Experimentelle Untersuchungen über die Wirkung des Lichtes auf die Formbildung von kernhaltigen und kernlosen Acetabularia-Zellen. Z. Naturforsch. 8b, 334–342 (1953).

    Google Scholar 

  • Biebl, R.: [1] Wirkung der UV-Strahlung auf Allium-Zellen. Protoplasma 36, 491–513 (1942).

    Article  Google Scholar 

  • [2] Resistenz der Meeresalgen gegen sichtbares Licht und gegen kurzwellige UV-Strahlen. Protoplasma 41, 353–377 (1952).

    Google Scholar 

  • Bier, M., and F. F. Nord: On the mechanism of enzyme action XLVII. Effects of high intensity electron bombardment on crystalline trypsin. Arch. of Biochem. a. Biophysics 35, 204–215 (1952).

    Article  CAS  Google Scholar 

  • Bora, K. C.: Delayed effects in chromosome breakage by X-rays in Tradescantia bracteata. J. Genet. 52, 140–151 (1954).

    Article  CAS  Google Scholar 

  • Blau, M., u. K. Altenburger: Über einige Wirkungen von Strahlen. II. Z. Physik 12, 315–329 (1922).

    Article  Google Scholar 

  • Blout, E. R.: Ultraviolet microscope and ultraviolet microspectroscopy. Adv. Biol. a. Med. Physics 3, 285–336 (1953).

    CAS  Google Scholar 

  • Blum, H. F., J. S. Cook and G. M. Loos: [1] A comparison of five effects of ultraviolet light on the Arbacia egg. J. Gen. Physiol. 37, 313–324 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Blum, H. F., E. F. Kauzmann and G. B. Chapman: [2] Ultraviolet light and the mitotic cycle in the Sea Urchins egg. J. Gen. Physiol. 37, 325–333 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Blum, H. F., J. C. Robinson and G. M. Loos: [3] The loci of action of ultraviolet and X-radiation and of photorecovery in the egg and sperm of the Sea Urchin Arbacia punctulata. J. Gen. Physiol. 35, 323–342 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Borthwick, H. A., M. W. Parker and S. B. Hendricks: [1] Recent developments in the control of flowering by photoperiod. Amer. Naturalist 84, 117–134 (1950).

    Article  Google Scholar 

  • Borthwick, H.A., S. B. Hendricks and M. W. Parker: [2] Action spectrum for inhibition of stem growth in dark grown seedlings of albino and nonalbino barley. Bot. Gaz. 113, 95–105 (1952).

    Article  Google Scholar 

  • Bowen, E. J.: [1] The chemical aspects of light, 3. Aufl. Oxford: Clarendon Press 1949.

    Google Scholar 

  • [2] Resonance transfer of energy between molecules. Symposia Soc. f. Exper. Biol. 5, 152–159 (1951).

    Google Scholar 

  • Bottelier, H. B.: Über den Einfluß äußerer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Ree. Trav. Bot. néerl. 31, 474–582 (1934).

    Google Scholar 

  • Boyle, A. C., H. F. Cook and T. J. Buchanan: The effects of microwaves. A prehminary investigation. Brit. J. Physic. Med., N. S. 13, 2–9 (1950).

    CAS  Google Scholar 

  • Brandt, C. L., P. J. Freemann and P. A. Swenson: The effect of radiations on galactocymase formation in yeast. Science (Lancaster, Pa.) (N. Y.) 113, 383–384 (1950).

    Article  Google Scholar 

  • Brauer, L: Experimentelle Untersuchungen über die Wirkung von Meterwellen verschiedener Feldstärke auf das Teilungswachstum der Pflanzen. Chromosoma (Wien) 3, 483–509 (1950).

    Article  CAS  Google Scholar 

  • Brauner, L.: Untersuchungen über die Photolyse des Heteroauxins I. Z. Bot. 41, 291–342 (1953).

    CAS  Google Scholar 

  • Brauner, L., u. M. Brauner: [1] Untersuchungen über den photoelektrischen Effekt in Membranen I. Protoplasma 28, 230–261 (1937).

    Article  Google Scholar 

  • [2] Untersuchungen über die Photolyse des Heteroauxins II. Z. Bot. 42, 83–124 (1954).

    Google Scholar 

  • Bresch, C.: Zur Reaktivierung von Bacteriophages 1. Mitteilung. Z. Natunorsch. 5b, 420–422 (1950).

    Google Scholar 

  • Brode, W. R.: The absorption spectra of vitamins, hormones and enzymes. Adv. Enzymol. 4, 269–311 (1946).

    Google Scholar 

  • Brown, S. O.: Relation between light and the electric polarity of Chara. Plant. Physiol. 13, 713–736 (1938).

    Article  PubMed  CAS  Google Scholar 

  • Bücher, Th.: Probleme des Energietransportes innerhalb lebender Zellen. Adv. Enzymol. 14, 1–48 (1953).

    Google Scholar 

  • Bünning, E.: [1] Physikalischchemische Grundlagen der biologischen Vorgänge. Fortschr. Bot. 11, 128–145 (1944).

    Google Scholar 

  • [2] Entwicklungs- und Bewegungsphysiologie der Pflanze, 3. Aufl. Berlin: Springer 1953.

    Google Scholar 

  • Bünning, E., u. D. v. Wettstein: Polarität und Differenzierung an Mooskeimen. Naturwiss. 40, 147–148 (1953).

    Google Scholar 

  • Butler, J. A. V., and J. T. Randall: Progress in biophysics and biophysical chemistry, Bd. I und folgende. 1949–1955.

    Google Scholar 

  • Buy, H. G. Du, and E. L. Nuernbergk: Phototropismus und Wachstum der Pflanzen III. Erg. Biol. 12, 323–543 (1935).

    Google Scholar 

  • Calcutt, G.: A factor influencing the intracellular exposure of sulphhydryl groups. Nature (Lond.) 166, 443–444 (1950).

    Article  CAS  Google Scholar 

  • Caldas, L. R., et Th. Constantin: Courbes de survie de levures haploides et de diploides soumises aux rayons ultraviolets. C. r. Acad. Sci. (Paris) 232, 2356–2358 (1951).

    CAS  Google Scholar 

  • Caldecott, R. S.: [1] Inverse relationship between the water content of seeds and their sensitivity of X-rays. Science (Lancaster, Pa.) 120, 809–810 (1954).

    CAS  Google Scholar 

  • [2] Effect of ionizing radiation on seeds of barley. Radiation Res. 1, 490 (1954).

    Google Scholar 

  • Canzanelli, A., R. Guild and D. Rapport: Ammonia and urea production and changes in absorption spectra of nucleic acid derivatives following ultraviolet irradiation. Amer. J. Physiol. 167, 364–374 (1951).

    PubMed  CAS  Google Scholar 

  • Carlson, J. G.: Immediate effects on divisions, morphology and viability of the cell. In Hollaender, Radiation Biology, Bd. I, Teil 2, S. 763–824. 1954.

    Google Scholar 

  • Caspersson, T. O.: Cell growth and cell function. New York: W. W. Norton & Comp. Inc. 1950.

    Google Scholar 

  • Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 461–469 (1954).

    CAS  Google Scholar 

  • Conrad, W. E.: The isolation of oxamide and parabanic acid from the products of ultraviolet irradiated uracil. Radiation Res. 1, 523–529 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Courcy jr., S. J. de, J. O. Ely and M. H. Ross: Effect of ultraviolet light on deoxyribonucleic acid in rat thymocytes. Nature (Lond.) 172, 119 (1953).

    Article  Google Scholar 

  • Crowther, J. A.: Some considerations relative to the action of X-rays on tissue cells. Proc. Roy. Soc. Lond. 96, 207 (1924).

    Article  Google Scholar 

  • Dale, W. M.: [1] Some aspects of the biochemical effects of ionizing radiations. Symposium on Radiobiology, ed. by J. J. Nickson, S. 177–188. New York: John Wiley & Sons Inc. 1952.

    Google Scholar 

  • [2] The indirect action of ionizing radiations on aqueous solutions and its dépendance on the chemical structure of the substrate. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 39–56 (1952).

    Google Scholar 

  • [3] Basic radiation biochemistry. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 255–281. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Daniel, G., and H. Park: Glutathion and X-ray injury in hydra and paramaecium. J. Cellul. a. Comp. Physiol. 42, 359–367 (1953).

    Article  CAS  Google Scholar 

  • Daniels, M., G. Scholes and J. Weiss: After-effect in aqueous solutions of deoxyribonucleic acid irradiated with X-rays. Nature (Lond.) 171, 1153 (1953).

    Article  CAS  Google Scholar 

  • Dannenberg, M.: Zur Systematik der Ultraviolettabsorption I. Über substituierte Acetophenone, Benzoesäuren und Zimtsäuren. Z. Naturforsch. 4b, 327–344 (1949).

    CAS  Google Scholar 

  • Davies, H. G., and P. M. B. Walker: Microspectrometry of Irving and fixed cells. Progr. Biophysics a. Biophysical Chem. 3, 195–236 (1953).

    CAS  Google Scholar 

  • Debye, P., and J. V. Edwards: A note on the phosphorescence of proteins. Science (Lancaster, Pa.) 116, 143–144 (1952).

    CAS  Google Scholar 

  • Denffer, D. V., u. A. Fischer: Papierchromatographischer Nachweis des ß-Indolaldehyds in photolytisch zersetzter IES-Lösung. Naturwiss. 39, 549–550 (1952).

    Article  Google Scholar 

  • Dessauer, F.: [1] Über einige Wirkungen von Strahlen I. Z. Physik 12, 38–47 (1922).

    Article  Google Scholar 

  • [2] Quantenbiologie. Berlin: Springer 1954.

    Google Scholar 

  • Dewhurst, H. A., A. H. Samuel and J. L. Magee: A theoretical survey of the radiation chemistry of water and aqueous solution. Radiation Res. 1, 62–84 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Dittrich, W., u. G. Schubert: Der Wirkungsmechanismus schneller Elektronen in biologischer Materie. Strahlenther. 92, 532–554 (1953).

    CAS  Google Scholar 

  • Doniach, J., A. Howard and S. R. Pelc: Autoradiography. Progr. Biophysics a. Biophysical Chem. 3, 1–26 (1953).

    CAS  Google Scholar 

  • Doty, B., and E. P. Geiduschek: Optical properties of proteins. In H. Neurath and K. Bailey, The proteins, S. 393–460. New York 1953.

    Google Scholar 

  • Drebinger, K.: [1] Kerngifte und Lichtstrahlung. Eine Studie an Froschspermien zur Wirkungsanalyse der Kerngifte. Roux’ Arch. 145, 174–204 (1951).

    Article  Google Scholar 

  • [2] Die an das Licht gebundene Kernschädigung der Kerngifte des Trypoflavintyps. Roux’ Arch. 147, 128–130 (1954).

    Google Scholar 

  • Duggar, B. M.: Biological effects of radiation. New York u. London 1936.

    Google Scholar 

  • Dulbecco, R.: [1] Reactivation of ultraviolet inactivated bacteriophages by visible light. Nature (Lond.) 163, 949–950 (1949).

    Article  CAS  Google Scholar 

  • [2] Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bacter. 59, 329–347 (1950).

    Google Scholar 

  • [3] Experiments on photoreactivation of inactive bacteriophages. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 125–128 (1952).

    Google Scholar 

  • [4] Photoreactivation. In A. Hollaender, Radiation biology, Bd. II, S. 455–486. New York: McGraw Hill Book Comp. Inc. 1955.

    Google Scholar 

  • Elwert, G., J. Reinert u. W. Mitlacher: Zur Frage des Einflusses von Meterwellen auf Keimungs- und Wachstumsvorgänge bei Pflanzen. Z. Naturforsch. 7b, 109–112 (1952).

    Google Scholar 

  • Engel, O.S.: Veränderungen der Strahlenempfindhchkeit der Weizensamen. Dokl. Akad. Nauk SSSR., N.S. 85, 229–231 (1952).

    Google Scholar 

  • Ehreberg, L., Å. Gustafsson, U. Lundquist and N. Nybom: Irradiation effects, seed soaking and oxygen pressure in barley. Hereditas (Lund) 39, 493–504 (1953).

    Article  Google Scholar 

  • Errera, M.: [1] Mécanismes de l’action des radiations sur le noyau cellulaire. Ann. Soc. roy. Sci. méd. et natur. Brüx. 5, 65–176 (1952).

    CAS  Google Scholar 

  • [2] Etude photochimique de l’acide désoxyribonucleique. I. Measures énergétiques. II. Etude des produites de la photolyse. Biochim. et Biophysica Acta 8, 30–37, 115–124 (1952).

    Google Scholar 

  • [3] Mechanism of biological action of ultraviolet and visible radiations. Progr. Biophysics a. Biophysical Chem. 3, 88–130 (1953).

    Google Scholar 

  • Errera, M., et A. Herve: Méchanismes de l’action biologique des radiations. Liège: Desoer; Paris: Masson & Cie. 1951.

    Google Scholar 

  • Evans, M. G., and N. Uri: The photochemical formation and reactions of atoms and radicals in aqueous systems. Symposia Soc. f. Exper. Biol. 5, 130–140 (1952).

    Google Scholar 

  • Fano, U.: Principles of radiological physics. In A. Hollaender, Radiation biology, Bd I, Teil 1, S. 1–144. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Ferri, M. G.: Fluorescence and photoinactivation of indolacetic acid. Arch. Biochim. 31, 127–131 (1951).

    Article  CAS  Google Scholar 

  • Fitting, H.: Untersuchungen über die Induktion der Dorsiventralität bei den Brutkörperkeimlingen der Marchantieen. III. Jb. wiss. Bot. 85, 169–242 (1937).

    Google Scholar 

  • Föckler, H.: Über den Einfluß des Lichtes auf die Atmung farbloser und assimilierender Gewebe und seine Rolle beim „funktionellen Sonnenstich“. Jb. wiss. Bot. 87, 45–92 (1938).

    Google Scholar 

  • Förster, Th.: [1] Farbe und Konstitution organischer Verbindungen vom Standpunkt der modernen physikalischen Theorie. Z. Elektrochem. 45, 548–573 (1939).

    Google Scholar 

  • [2] Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck & Ruprecht 1951.

    Google Scholar 

  • Forssberg, A.: On the possibility of protecting the living organism against roentgen rays by chemical means. Acta radiol. (Stockh.) 33, 296–304 (1950).

    Article  CAS  Google Scholar 

  • Forssberg, A., and N. Nybom: Combined effects of cystein and irradiation on growth and cytology of Allium cepa roots. Physiol. Plantarum (Copenh.) 6, 78–95 (1953).

    Article  CAS  Google Scholar 

  • Franck, J.: A critical survey of the physical background of photosynthesis. Annual Rev. Plant Physiol. 2, 53–86 (1951).

    Article  CAS  Google Scholar 

  • Franck, J., and C. S. French: Photooxydation processes in plants. J. Gen. Physiol. 25, 309–324 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Franck, J., and R. Platzman: Physical principles underlying photochemical radiation. Chemical and radiobiological reactions. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 191–253. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Freemann, P. J., and A. C. Giese: Photodynamic effects on metabolism and reproduction in yeast. J. Cellul. a. Comp. Physiol. 39, 301–322 (1952).

    Article  Google Scholar 

  • French, C. S., and V. K. Young: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. Gen. Physiol. 35, 873–890 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Freytag, H.: Möglichkeit einer Photosynthese von Pyridin-Derivaten. Z. Naturforsch. 3b, 465–466 (1948).

    CAS  Google Scholar 

  • Fritz Niggli, H.: Unterschiedliche Wirksamkeit der 180 keV- und 31 MeV-Strahlen auf die Letalität von C 57-Mäusen. Experientia (Basel) 10, 209–210 (1954).

    Article  CAS  Google Scholar 

  • Gärtner, H., u. K. Peters: Einfluß der Dosis und Dosisleistung von Röntgenstrahlen und schnellen Elektronen auf die Mitosehäufigkeit in Gewebekulturen. Strahlenther. 92, 555–562 (1953).

    Google Scholar 

  • Gaffron, H.: Über den Mechanismus der Sauerstoffaktivierung durch belichtete Farbstoffe. Biochem. Z. 264, 251–271 (1933).

    CAS  Google Scholar 

  • Galston, A. W.: [1] Riboflavinsensitiv photooxydation of indol-acetic acid and related compounds. Proc. Nat. Acad. Sci. U.S.A. 35, 10–17 (1949).

    Article  CAS  Google Scholar 

  • [2] Riboflavin, light and the growth of plants. Science (Lancaster, Pa.) 111, 619–624 (1950).

    Google Scholar 

  • Galston, A. W., and R. S. Baker: [1] Inactivation of enzymes by visible light in the presence of riboflavin. Science (Lancaster, Pa.) 109, 485–486 (1949).

    CAS  Google Scholar 

  • [2] Studies on the physiology of light action II. The photodynamic action of riboflavin. Amer. J. Bot. 36, 773–780 (1949).

    Google Scholar 

  • [3] Studies on the physiology of light action. V. Photoinductive alteration of auxin metabolism in etiolated peas. Amer. J. Bot. 40, 512–516 (1953).

    Google Scholar 

  • Galston, A. W., J. Bonner and R. S. Baker: Flavoprotein and peroxidase as components of the indol-acetic acid oxydase system of peas. Arch. of Biochem. a. Biophysics 42, 456–469 (1953).

    Article  CAS  Google Scholar 

  • Garrison, V. M., H. R. Haymond and B. M. Weeks: Some affects of heavy-particle irradiation of aqueous acetic acid. Radiation Res. 1, 97–108 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Gessner, F.: Die Assimilation vitalgefärbter Chloroplasten. Planta (Berl.) 32, 1–5 (1941).

    Article  CAS  Google Scholar 

  • Ghormley, J. A., and C. J. Hochanadel: The yields of hydrogen and hydrogen peroxide in the irradiation of oxygen saturated water with cobalt gamma-rays. J. Amer. Chem. Soc. 76, 3351–3352 (1954).

    Article  CAS  Google Scholar 

  • Giles, N. H.: Radiation induced chromosome aberrations in Tradescantia. In A. Hollaender, Radiation biology, Bd. I, Teil 2, S. 713–762. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Giles jr., N. H., and H. Ph. Riley: Studies on the mechanism of the oxygen effect on the radiosensitivity of Tradescantia chromosomes. Proc. Nat. Acad. Sci. U.S.A. 36, 337–344 (1950).

    Article  Google Scholar 

  • Giles, N. H., F. J. de Serres and A. V. Beatty: The effect of radiation dose fractionation on chromosome aberration, frequencies in Tradescantia microspores. II. Studies with fast neutrons. Genetics 38, 416–420 (1953).

    PubMed  CAS  Google Scholar 

  • Giese, A. C.: [1] Action of ultraviolet radiation on protoplasm. Physiologic. Rev. 30, 431–458 (1950).

    CAS  Google Scholar 

  • [2] Some properties of a photodynamic pigment from Blepharisma. J. Gen. Physiol. 37, 259–269 (1954).

    Google Scholar 

  • Giese, A. C., C. S. Brandt, R. Iverson and P. H. Wells: [1] Photoreactivation in Colpidium colpoda. Biol. Bull. 103, 336–344 (1952).

    Article  Google Scholar 

  • Giese, A. C., R. M. Iverson, D. C. Shepard, C. Jacobson and C. L. Brandt: [2] Quantum relations in photoreactivation of Colpidium. J. Gen. Physiol. 37, 249–258 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Giese, A.C., C. L. Brandt, C. Jacobson, D. C. Shepard and R. T. Sanders: [3] The effect of starvation on photoreactivation in Colpidium colpoda. Physiologie. Zool. 27, 71–78 (1954).

    Google Scholar 

  • Giri, K. V., G. D. Kalyankar and C. S. Vaidyanathan: Photolysis of metionine in presence of photocatalysis. Naturwiss. 41, 88 (1954).

    Article  CAS  Google Scholar 

  • Glocker, R.: Quantenphysik der biologischen Röntgenstrahlenwirkung. Z. Physik 77, 653–675 (1932).

    Article  CAS  Google Scholar 

  • Glubrecht, H.: Über die Wirkung von UV-Strahlen in somatischen Zellen. Z. Naturforsch. 8b, 17–27 (1953).

    Google Scholar 

  • Graffi, A., H. Kriegel, H. Schreiber u. F. Windisch: Die photosensibilisierende Wirkung verschiedener cancerogener und nicht cancerogener Kohlenwasserstoffe auf die Hefezellen. Z. Naturforsch. 8b, 142–145 (1953).

    CAS  Google Scholar 

  • Granick, S.: Biosynthesis of chlorophyll and related pigments. Ann. Rev. Plant Physiol. 2, 115–144 (1951).

    Article  CAS  Google Scholar 

  • Gray, L. H.: [1] Biological actions of ionizing radiations. Progr. in Biophysics 2, 240–305 (1951).

    CAS  Google Scholar 

  • [2] The initiation and development of cellular damage by ionizing radiations. Brit. J. Radiol. 26, 609–618 (1953).

    Google Scholar 

  • [3] Characteristics of chromosome breakage by different agents. Heredity (Lond.) 6 Suppl. 311–315 (1953).

    Google Scholar 

  • [4] Some characteristics of biological damage induced by ionizing radiations. Radiation Res. 1, 189–213 (1954).

    Google Scholar 

  • Gros, Ch. M., et P. Mandel: Action d’irradiation totale du rat sur les acides nucléiques de la rate. J. belge Radiol. 35, 357–359 (1952).

    PubMed  CAS  Google Scholar 

  • Guerrini, G.: Vgl. E. Bünning [1].

    Google Scholar 

  • Haas, F., J. B. Clark, O. Wyss and W. S. Stone: [1] Mutations and mutagenic agents in bacteria. Amer. Naturalist 84, 261–275 (1950).

    Article  CAS  Google Scholar 

  • Haas, F. L., E. Dudgeon, F. E. Clayton and W. S. Stone: [2] Frequency of chromosomal aberrations as related to rate of irradiation, temperature and gases. Genetics 37, 589–590 (1952).

    Google Scholar 

  • [3] Measurement and control of some direct and indirect effects of X-radiation. Genetics 39, 453–471 (1954).

    Google Scholar 

  • Harder, R.: Über Färb- und Musteränderungen bei Blüten. Naturwiss. 26, 713–722 (1938).

    Article  Google Scholar 

  • Harm, W., u. W. Stein: [1] Beeinflussung der UV-Inaktivierung von Coli-Bakterien durch Bebrütungstemperatur und Nährboden. Z. Naturforsch. 8b, 123–133 (1953).

    Google Scholar 

  • [2] Weitere Experimente zur Reaktivierung von ultraviolett- und peroxydinaktivierten Coli-Stämmen. Z. Naturforsch. 8b, 729–741 (1953).

    Google Scholar 

  • Harrington, N. J., and R. W. Koza: Effect of X-radiation on the desoxyribonucleic acid and on the size of grasshopper embryonic nuclei. Biol. Bull. 101, 138–150 (1951).

    Article  CAS  Google Scholar 

  • Hart, E. J.: Molecular product and free radical yields of ionizing radiations in aqueous solutions. Radiation Res. 1, 53–61 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Harte, C.: Mutationsauslösung durch Ultrakurzwellen. Chromosoma 3, 440–447 (1949).

    Article  Google Scholar 

  • Heidenthal, G., L. B. Clark and J. W. Gowen: Comparative effectiveness of X-rays of 124 KV and 50 MeV on Habrobracon eggs. Radiation Res. 1, 499 (1954).

    Google Scholar 

  • Heinmets, F.: Reactivation of ultraviolet inactivated Escherichia coli by pyruvate. J. Bacter. 66, 455–457 (1953).

    CAS  Google Scholar 

  • Heinmets, F., W. W. Taylor and I.I. Lehman: [1] The use of metabolites in the restoration of the vitability of heat and chemically inactivated Escherichia coli. J. Bacter. 67, 5–12 (1954).

    CAS  Google Scholar 

  • Heinmets, F., J. J. Lehmann, W. W. Taylor and R. H. Kathan: [2] The study of factors with influence metabolic reactivation of the ultraviolet inactivated Escherichia coli. J. Bacter. 67, 511–522 (1954).

    CAS  Google Scholar 

  • Herve, A., Z. M. Bacq und H. Betz: Schutzwirkung von Natriumcyanid und -azid gegen letale Röntgenbestrahlung. J. chim. physique etc. 48, 256–257 (1951).

    CAS  Google Scholar 

  • Hevesy, G. V.: [1] Ionizing radiation and cellular metabolism. Symposium on Radiobiology, ed. by J. J. Nickson, S. 189–213. New York: John Wiley & Sons Inc. 1952.

    Google Scholar 

  • [2] Die Anwendung der radioaktiven Indikatoren in der Radiobiologie. Strahlenther. 93, 325–348 (1954).

    Google Scholar 

  • Hill, R. F., and H. H. Rossi: [1] Abscence of photoreactivation in Tl bacteriophage irradiated with ultraviolet in the dry state. Science (Lancaster, Pa.) 116, 424–425 (1952).

    CAS  Google Scholar 

  • [2] The ultraviolet sensitivity and photoreactivability of T1 bacteriophage. I. Effect of irradiation conditions upon survival curves. Radiation Res. 1, 282–293 (1954).

    Google Scholar 

  • [3] The ultraviolet sensitivity and photoreactivability of T1 bacteriophage. II. Interpretation of the survival curves. Radiation Res. 1, 358–368 (1954).

    Google Scholar 

  • Hirshfield, H., and A. C. Giese: Ultraviolet radiation effects on growth processes of Blepharisma undulans. Exper. Cell Res. 4, 283–294 (1953).

    Article  Google Scholar 

  • Hollaender, A.: [1] Physical and chemical factors modifying the sensitivity of cells to high energy and ultraviolet radiation. U.S.A. E. C. Document No ORNL 844, 1950.

    Google Scholar 

  • [2] Radiation Biology, vol. I, High energy radiation. Part 1 u. part 2. New York: McGraw Hill Book Comp. 1954.

    Google Scholar 

  • [3] Radiation Biology Vol. II. Ultraviolet and related radiations. New York: McGraw Hill Book Comp. 1955.

    Google Scholar 

  • [4] Effect of long ultraviolet and short visible radiation (3500–4900 Å) on Escherichia coli. J. Bacter. 46, 531–541 (1943).

    Google Scholar 

  • Hollaender, A., and G. E. Stapleton: Fundamental aspects of radiation protection from a microbiological point of view. Physiologic. Rev. 33, 77–84 (1953).

    CAS  Google Scholar 

  • Holt, A. S., I. A. Brooks and W. A. Arnold: Some effects of 2537 Å on green algae and chloroplast preparations. J. Gen. Physiol. 34, 627–645 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss, R. D.: The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J. of Biol. Chem. 175, 315–332 (1948).

    CAS  Google Scholar 

  • Houtermans, Th.: [1] Über den Einfluß des Wachstumszustandes eines Bacteriums auf seine Strahlenempfindlichkeit. Z. Naturforsch. 8b, 767–771 (1953).

    Google Scholar 

  • [2] Über den Einfluß der Temperatur auf biologische Strahlenwirkungen. Z. Naturforsch. 9b, 600–602 (1954).

    Google Scholar 

  • [3] Über den Verlauf der Inaktivierungskurven für E. coli bei sehr kleinen Bestrahlungsdosen. Strahlenther. 9 3, 130–137 (1954).

    Google Scholar 

  • Howard, A.: Report of “Symposium on mode of action of ionizing radiations“. Nucleonics 7, 26–30 (1950).

    PubMed  CAS  Google Scholar 

  • Howard, A., and S. R. Pelc: Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Lond.) 6 Suppl. 261 (1953).

    Google Scholar 

  • Hutchinson, F., and E. R. Mosburg jr.: Deuteron inactivation of adsorbed monolayers of bovine serum albumin. Arch. of Biochem. a. Biophysics 51, 436 (1954).

    Article  CAS  Google Scholar 

  • Jacob, F.: Effets de la carence glucidique sur l’induction d’un Pseudomonas pyocyanea lysogène. Ann. Inst. Pasteur 82, 433–456 (1952).

    CAS  Google Scholar 

  • Jacob, F., A. M. Torriani and J. Monod: L’effet du rayonnement ultraviolet sur la biosynthèse de la ß-galactosidase et sur la multiplication du bacteriophage T2 chez Escherichia coli. C. r. Acad. Sci. (Paris) 233, 1230–1232 (1951).

    CAS  Google Scholar 

  • Johnson, F. H., E. A. Flagler and H. F. Baum: Relation of oxygen to photoreactivation of bacteria after ultraviolet radiation. Proc. Soc. Exper. Biol. a. Med. 74, 32–35 (1950).

    CAS  Google Scholar 

  • Jonas, H.: Some effects of radio frequency irradiations on small oil-bearing seeds. Physiol. Plantarum (Copenh.) 5, 41–51 (1952).

    Article  Google Scholar 

  • Kanazir, D., et M. Errera: Metabolism des acides nucléiques chez Escherichia coli B après irradiation ultraviolette. Biochim. et biophysica Acta (Amsterd.) 14, 62 (1954).

    Article  CAS  Google Scholar 

  • Kaplan, R.: [1] Photodynamische Auslösung von Mutationen in den Sporen von Pénicillium notatum. Planta (Berl.) 38, 1–11 (1950).

    Article  Google Scholar 

  • Kaplan, R. W.: [2] Auslösung von Phagenresistenzmutationen bei Bacterium coli durch Erythrosin mit und ohne Belichtung. Naturwiss. 37, 308 (1950).

    Article  CAS  Google Scholar 

  • [3] Genetische Wirkungen durch UV und Licht. Strahlenther. 86, 157–163 (1952).

    Google Scholar 

  • [4] Über Möglichkeiten der Mutationsauslösung in der Pflanzenzüchtung. Z. Pflanzenzucht. 32, 121–131 (1953).

    Google Scholar 

  • [5] Beeinflussung des durch Röntgenstrahlen induzierten mutativen Fleckenmosaiks. Strahlenther. 94, 106–118 (1954).

    Google Scholar 

  • Kaplan, S., E. de Rosenblum and V. Bryson: Adoptive enzyme formation in radiation sensitive and radiation resistant Escherichia coli following exposure to ultraviolet. J. Cellul. a. Comp. Physiol. 41, 153–162 (1953).

    Article  CAS  Google Scholar 

  • Kaudewitz, F.: Untersuchung des Einflusses von Meter- und Kilometerwellen auf die Generationsdauer einiger Protozoen. Z. Naturforsch. 9b, 145–148 (1954).

    Google Scholar 

  • Kelly, S. L., and H. B Jones: Effects of irradiation on nucleic acid formation. Proc. Soc. Exper. Biol. a. Med. 74, 493–497 (1950).

    CAS  Google Scholar 

  • Kelner, A.: [1] Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc. Nat. Acad. Sci. U.S.A. 35, 73–79 (1949).

    Article  CAS  Google Scholar 

  • [2] Action spectra for photoreactivation of ultravioletirradiated Escherichia coli and Streptomyces griseus. J. Gen. Physiol. 34, 835–852 (1951).

    Google Scholar 

  • [3] Experiments on photoreactivations with bacteria and other microorganisms. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 115–118 (1952).

    Google Scholar 

  • [4] Growth, respiration and nucleic acid synthesis in ultraviolet irradiated and in photoreactivated Escherichia coli. J. Bacter. 65, 252–262 (1953).

    Google Scholar 

  • Kiepenheuer, K. O., J. Brauer u. C. Harte: Über die Wirkung von Meterwellen auf das Teilungswachstum der Pflanzen. Naturwiss. 36, 27 (1949).

    Article  Google Scholar 

  • Kimball, R. F.: The influence of H2O2 on mutation production by X-rays in Paramaecium aurelia. Radiation Res. 1, 501 (1954).

    Google Scholar 

  • Kimball, R. F., and N. Gaither: [1] The influence of light upon the action of ultraviolet on Paramaecium aurelia. J. Cellul. a. Comp. Physiol. 37, 211–233 (1951).

    Article  CAS  Google Scholar 

  • [2] Role of externally produced hydrogen peroxide in damage to Paramaecium aurelia by X-rays. Proc. Soc. Exper. Biol. a. Med. 80, 525–529 (1952).

    Google Scholar 

  • Kirby-Smith, J. S., and D. S. Daniels: The relative effects of X-rays, gamma rays and beta rays on chromosomal breakage in Tradescantia. Genetics 38, 375–388 (1953).

    PubMed  CAS  Google Scholar 

  • Kirby-Smith J. S., and C. P. Swanson: The effects of fast neutrons from a nuclear detonation on chromosome breakage in Tradescantia. Science (Lancaster, Pa.) 119, 42–45 (1954).

    CAS  Google Scholar 

  • Kleczkowski, J., and A. Kleczkowski: The behaviour of Rhizobium bacteriophages during and after exposure to ultraviolet radiation. J. Gen. Microbiol. 8, 135–144 (1953).

    PubMed  CAS  Google Scholar 

  • Klein, G., and A. Forssberg: Studies in the effect of X-rays on the biochemistry and cellular composition of ascites tumors. I. Effect on growth, cell volumes, nucleic acid and nitrogen synthesis in the Ehrlich ascites tumor. Exper. Cell Res. 6, 211–220 (1954).

    Article  CAS  Google Scholar 

  • Knapp, E.: Entwicklungsphysiologische Untersuchungen an Fucaceen-Eiern. I. Planta (Berl.) 14, 731–751 (1931).

    Article  Google Scholar 

  • Köhler, H.: Untersuchungen über den Einfluß von Kurzwellen auf Keimfähigkeit und Wachstum von Pflanzen. Diss. Greifswald 1944.

    Google Scholar 

  • Konzak, C. F.: Differential sensitivity of soaked barley seeds to X-rays and thermal neutrons. Radiation Res. 1, 220 (1954).

    Google Scholar 

  • Koski, V. M., C. S. French and I. H. C. Smith: The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch. of Biochem. a. Biophysics 31, 1–17 (1951).

    Article  CAS  Google Scholar 

  • Lang, A.: [1] Entwicklungsphysiologie. Fortschr. Bot. 15, 400–475 (1952).

    Google Scholar 

  • [2] Entwicklungsphysiologie. Fortschr. Bot. 16, 342–376 (1954).

    Google Scholar 

  • Langendorff, H. u. M., u. K. Sommermeyer: Die Deutung des LD 50-Anstieges mit steigender spezifischer Ionisation und die Reaktivierung sowie Sensibilisierung durch Wärme bei E. choli. Naturwiss. 41, 189–190 (1954).

    Article  Google Scholar 

  • Langendorff, H., R. Koch u. H. Sauer: [1] Untersuchungen über einen biologischen Strahlenschutz. IV. Die Bedeutung Sulfhydrylgruppen tragender Verbindungen für den biologischen Strahlenschutz. Strahlenther. 93, 281–288 (1954).

    CAS  Google Scholar 

  • Langendorff, H., R. Koch u. U. Hagen: [2] Untersuchungen über einen biologischen Strahlenschutz. VIII. Mitt. Zur Spezifität des Zystein und verwandter Sulfhydrylkörper beim Strahlenschutz. Strahlenther. 95, 238–250 (1954).

    CAS  Google Scholar 

  • Laser, H.: The oxygen-effect in ionizing irradiation. Nature (Lond.) 174, 753 (1954).

    Article  CAS  Google Scholar 

  • Latarjet, R., and L. R. Caldas: Restoration induced by catalase in irradiated microorganisms. J. Gen. Physiol. 35, 455–470 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Latarjet, R., et B. Milétic: Actions des ultra-violets longs et des visibles courts (3400–5500 Å) sur les complexes bacterie bacteriophage. Ann. Inst. Pasteur 84, 205–217 (1953).

    CAS  Google Scholar 

  • Lavik, P. S., and G. W. Buckaloo: Nucleic acid synthesis in X-irradiated chick embryos. Radiation Res. 1, 221 (1954).

    Google Scholar 

  • Lea, D. E.: Action of radiation of living cells. Cambridge 1947.

    Google Scholar 

  • Lewis, G. N., and M. Calvin: Paramagnetism of the phosphorescent state. J. Amer. Chem. Soc. 67, 1232–1233 (1945).

    Article  CAS  Google Scholar 

  • Lewis, G. N., and M. Kasha: Phosphorescence and the triplet state. J. Amer. Chem. Soc. 66, 2100–2116 (1944).

    Article  CAS  Google Scholar 

  • Lewis, G. N., and D. L. Lipkin: Reversible photochemical processes in rigid media: The dissociation of organic molecules into radicals and ions. J. Amer. Chem. Soc. 64, 2801–2808 (1942).

    Article  CAS  Google Scholar 

  • Liechti, A., u. E. Feistmann: Über die Empfindlickkeit von Einzellern auf ultraviolettes ind sichtbares Licht. Strahlenther. 62, 393–405 (1938).

    Google Scholar 

  • Lindemann, J.: Die Röntgenschädigung von Escherichia coli bei 180 keV und 31 MeV. Experientia (Basel) 9, 22–23 (1953).

    Article  Google Scholar 

  • Liverman, I. L., and J. Bonner: Biochemistry of the photoperiodic response. The high intensity light reaction. Bot. Gaz. 115, 121–128 (1954).

    Article  Google Scholar 

  • Livingston, R.: [1] General statements about chemical reactions induced by ionizing radiation. Symposium on Radiobiology, ed. by J. J. Nickson, S. 56–69. New York 1952.

    Google Scholar 

  • [2] Photochemistry. In A. Hollaender, Radiation Biology, Bd. II, S. 1–40. New York: McGraw Hill Book Comp. 1955.

    Google Scholar 

  • Lüning, K. G.: Effect of oxygen on irradiated males and females of Drosophila. Hereditas (Lund) 40, 295–312 (1954).

    Article  Google Scholar 

  • Luria, S. E., and F. M. Exner: The inactivation of bacteriophages by X-rays influence of the medium. Proc. Nat. Acad. Sci. U.S.A. 27, 370–375 (1941).

    Article  CAS  Google Scholar 

  • Mandels, G. R.: The photoinactivation of enzymes by riboflavin. Plant Physiol. 25, 763–766 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Mandl, I., B. Levy and A. D. Mc Laren: The photochemistry of proteins. IX. J. Amer. Chem. Soc. 72, 1790–1792 (1950).

    Article  CAS  Google Scholar 

  • Maxwell, C. R., D. C. Peterson and N. E. Sharpless: The effect of ionizing radiation on amino acids. I. The effect of X-rays on aqueous solutions of glycine. Radiation Res. 1, 530–545 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Mc Laren, A. D.: Photochemistry of enzymes, proteins and viruses. Adv. Enzymol. 9, 75–170 (1949).

    CAS  Google Scholar 

  • Mc Laren, A. D., P. Genitle, D. C. Kirk jr. and N. A. Levin: Photochemistry of proteins. XVII. Inactivation of enzyme3 with UV light and photolysis of the peptide bond. J. Polymer. Sci. 10, 333–344 (1953).

    Article  CAS  Google Scholar 

  • Mc Lean, A. D., and A. C. Giese: Absorption spectra of proteins and aminoacids after ultraviolet irradiation. J. of Biol. Chem. 187, 537–542 (1950).

    CAS  Google Scholar 

  • Mefferd jr., R. B., and L. L. Compbell jr.: Influence of temperature upon radiation sensitivity of thermophilic and mesophilic bacteria. Proc. Soc. Exper. Biol. a. Med. 79, 12–16 (1952).

    CAS  Google Scholar 

  • Mefferd jr., R. B., and T. S. Matney: Protection of Escherichia coli against ultraviolet radiation by pretreatment with carbon monoxide. Science (Lancaster, Pa.) 115, 116–117 (1952).

    CAS  Google Scholar 

  • Mellors, R. C., R. E. Berger and H. G. Streim: Ultraviolet microscopy and microspectroscopy of resting and dividing cells: studies with a reflecting microscope. Science (Lancaster, Pa.) 111, 627–632 (1950).

    CAS  Google Scholar 

  • Metzner, P.: Zur Kenntnis der photodynamischen Erscheinung. III. Mitteilung: Uber die Bindung der wirksamen Farbstoffe in der Zelle. Biochem. Z. 148, 498–523 (1924).

    CAS  Google Scholar 

  • Meyer, A. E., u. E. O. Seitz: Ultraviolette Strahlen. Berlin 1942.

    Google Scholar 

  • Michaelis, L.: Fundamentals of oxidation and respiration. Amer. Scientist 34, 573–596 (1946).

    CAS  Google Scholar 

  • Milétic, B., et P. Morenne: Nouvelles recherches sur la restauration induite par la catalase chez des Bact. irradiées. Ann. Inst. Pasteur 83, 515–527 (1952).

    Google Scholar 

  • Minder, W., u. D. Schön: Vergleichende Untersuchungen über den Schutzeffekt bei Bestrahlung definierter Systeme. Strahlenther. 91, 126–134 (1953).

    CAS  Google Scholar 

  • Möhler, H.: Das Absorptionsspektrum der chemischen Bindung. Jena 1943.

    Google Scholar 

  • Montfort, C.: Lichtlähmung und Lichtbleichung bei Wasserpflanzen. Planta (Berl.) 32, 121–149 (1941).

    Article  CAS  Google Scholar 

  • Montfort, C., I. Felgner u. L. Müller: Zeitphasen im Jahreslauf des lichtökologischen Chlorophyllspiegels beim photostabilen Laubblatt. Beitr. Biol. Pflanz. 29, 106–128 (1952).

    Google Scholar 

  • Moos, W. S.: How biological effectiveness varies with X-ray energy. Nucleonics 12, 46–49 (1954).

    Google Scholar 

  • Morowitz, H. J.: The action of ultraviolet light and ionizing radiation on spores of Bacillus subtilis. I. The ultraviolet lethal action, mutation action and absorption spectra. Arch. of Biochem. a. Biophysics 47, 325–337 (1953).

    Article  CAS  Google Scholar 

  • Mosebach, G.: [1] Über den Einfluß des Lichtes auf die Polarisierung des befruchteten Eies von Cystosira barbata Ag. Ber. dtsch. bot. Ges. 56, 210–225 (1938).

    Google Scholar 

  • [2] Über die Polarisierung der Equisetum-Spore durch das Licht. Planta (Berl.) 33, 340–387 (1943).

    Google Scholar 

  • Muller, H. J.: The nature of the genetic effects produced by radiation. The manner of production of mutations by radiation. In A. Hollaender, Radiation biology Bd. I, Teil 1, S. 351–473 u. 475–626. New York u. London 1954.

    Google Scholar 

  • Myers, J., and G. O. Burr: Studies on photosynthesis. Some effects of light of high intensity in Chlorella. J. Gen. Physiol. 24, 45–67 (1940).

    Article  PubMed  CAS  Google Scholar 

  • Nakao, Y.: Action of irradiated cytoplasm on untreated chromosomes of the silkworm. Nature (Lond.) 172, 625–626 (1953).

    Article  CAS  Google Scholar 

  • Nickson, J. L.: Symposium on radiobiology. The basic aspect of radiation effects on living systems. New York: John Wiley & Sons, Inc. 1952.

    Google Scholar 

  • Noack, K.: Photochemische Wirkungen des Chlorophylls und ihre Bedeutung für die Kohlensäureassimilation. Z. Bot. 17, 481–548 (1925).

    Google Scholar 

  • Noethling, W., u. H. Stubbe: Neuere botanische Untersuchungen über die Beziehung von Genmutabilität zur Quantität und Qualität kurzwelliger Strahlung. Strahlenther. 61, 622–630 (1938).

    Google Scholar 

  • Norman, A.: [1] Inactivation of Neurospora conidia by ultraviolet radiation. Exper. Cell. Res. 2, 454–473 (1951).

    Article  Google Scholar 

  • [2] Production of phenocopies in aerobacter aerogenes by ultraviolet radiation. J. Bacter. 65, 151–156 (1953).

    Google Scholar 

  • Novick, A., and L. Szilard: Experiments on light-reaction of ultraviolet inactivated bacteria. Proc. Nat. Acad. Sci. U.S.A. 35, 591–600 (1949).

    Article  CAS  Google Scholar 

  • Nybom, N., A. Gustafsson and L. Ehrenberg: On the injurious action of ionizing radiations in plants. Bot. Not. (Lund) 1952, 343–365.

    Google Scholar 

  • Ord, M. G., and L. A. Stocken: Biochemical aspects of the radiation syndrome. Physiologic. Rev. 33, 356–386 (1953).

    CAS  Google Scholar 

  • Oster, G., and A. D. Mc Laren: The ultraviolet light and photosensitived inactivation of tobacco mozaic virus. J. Gen. Physiol. 33, 215–228 (1949/50).

    Article  Google Scholar 

  • Patrick, W. N., and M. Burton: Polymer production in radiolysis of benzene. J. Amer. Chem. Soc. 76, 2626–2629 (1954).

    Article  CAS  Google Scholar 

  • Patt, H. M.: Protective mechanism in ionizing radiation injury. Physiologic. Rev. 33, 35–76 (1953).

    CAS  Google Scholar 

  • Patt, H. M., and A. M. Brues: The pathological physiology of radiation injury in the mammal. I. Physical and biological factors in radiation action. In A. Hollaender, Radiation biology, Bd. I, Teil 2, S. 919–958. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Patt, H. M., J. W. Clark and H. H. Vogel jr.: Comparative protective effect of cysteine against fast neutron and γ-irradiation in mice. Proc. Soc. Exper. Biol. a. Med. 84, 189–193 (1953).

    CAS  Google Scholar 

  • Peters, K.: [1] Stoffwechselbeziehungen zwischen bestrahltem und unbestrahltem Gewebe in ihrem Einfluß auf die Mitosenhäufigkeit in vitro. Z. Zellforsch. 39, 203–211 (1953).

    Article  PubMed  CAS  Google Scholar 

  • [2] Über die Bedeutung des Mediums für die Wirkung sekundärer Stoffwechselprodukte auf die Mitosehäufigkeit in halbbestrahlten Gewebekulturen. Z. Zellforsch. 40, 510–518 (1954).

    Google Scholar 

  • Piringer, A. A. and P. H. Heinze: Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 29, 467–472 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Pirschle, K.: Weitere Beobachtungen über den Einfluß von langwelliger und mittelwelliger UV-Strahlung auf höhere Pflanzen. Biol. Zbl. 61, 452–473 (1941).

    Google Scholar 

  • Pirson, A., u. F.Alberts: Über die Assimilation von Helodeablättchen nach Vitalfärbung mit Vitamin B. Protoplasma 35, 131–136 (1940).

    Article  CAS  Google Scholar 

  • Platzmann, R. L.: On the primary processes in radiation chemistry and biology. Symp. on radiobiol., edited by J. J. Nickson, S. 97–115. New York: John Wiley & Sons, Inc. 1952.

    Google Scholar 

  • Plaen, P. de: Tendances actuelles dans l’interprétation de la radiolésion cellulaire. J. belge Radiol. 35, 113–129 (1953).

    Google Scholar 

  • Pollard, E.: Primary ionisation as a test of molecular organisation. Adv. Biol. a. Med. Physics 3, 153–190 (1953).

    CAS  Google Scholar 

  • Pollard, E., and J. Setlow: Effect of ionizing radiation on the serological affinity of Trbacteriophage. Arch. of Biochem. a. Biophysics 50, 376–382 (1954).

    Article  CAS  Google Scholar 

  • Porter, J. W., and H. J. Knauss: Inhibition of growth of chlorella pyrenoidosa by ß-rays emitting radioisotopes. Plant Physiol. 29, 60–63 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Powell, W. F., and E. Pollard: Radiation sensitivity of enzymes in intact cells. Bull. Amer. Phys. Soc. 28, 70 (1953).

    Google Scholar 

  • Pratt, R., J. Dufrenoy and G. Gardner: Effect of ultraviolet irradiation on Escherichia coli and its reversal. Pharmaceut. Assoc. 39, 496–500 (1950).

    Article  CAS  Google Scholar 

  • Pringsheim, P.: Fluorescence and phosphorescence. New York: Intersci. Publ. 1949.

    Google Scholar 

  • Putnam, F. W.: Bacteriophages: Nature and reproduction. Adv. Protein Chem. 8, 175–284 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch, E.: [1] Photosynthesis and related Processes. I. New York 1945.

    Google Scholar 

  • [2] Photosynthesis and related processes. II. Teil 1. New York 1951.

    Google Scholar 

  • Rajewsky, B.: [1] Biophysikalische Grundlagen der Ultrakurzwellenbehandlung im lebenden Gewebe. In Ergebnisse der biophysikalischen Forschung. Leipzig: Georg Thieme 1938.

    Google Scholar 

  • [2] The limits of the target theory of the biological action of radiation. Brit. J. Radiol. 25, 550–552 (1952).

    Google Scholar 

  • [3] Strahlendosis und Strahlenwirkung. Stuttgart: Georg Thieme 1954.

    Google Scholar 

  • Ramshorn, K.: [1] Einige Beobachtungen über den Einfluß von Hochfrequenzfeldern auf die pflanzliche Entwicklung/Ber. dtsch. bot. Ges. 64, 24–25 (1952).

    Google Scholar 

  • [2] Über den Einfluß von Hochfrequenzfeldern auf den pflanzlichen Organismus. I. Die Wirkung auf die Entwicklung von Tomatenpflanzen bei Frequenzen von 75 und 150 Mhz. Die Kulturpflanze 1, 79–110 (1953).

    Google Scholar 

  • Rapkine, S., D. Shugar and L. Siminowitch: The activation by heat of triose phosphate dehydrogenase. Arch. of Biochem. 26, 33–49 (1950).

    CAS  Google Scholar 

  • Rapport, D., and A. Canzanelli: The photochemical action of ultraviolet light on the absorption spectra of nucleic acid and related substances. Science (N. Y.) 112, 469–471 (1950).

    Article  CAS  Google Scholar 

  • Read, J.: [1] The effect of ionizing radiations on the broad bean root. Part X. The dependence of the X-ray sensitivity on dissolved oxygen. Brit. J. Radiol. 25, 89–99, 154–160 (1952).

    Article  PubMed  CAS  Google Scholar 

  • [2] Mode of addition of X-ray doses given with different oxygen concentrations. Brit. J. Radiol. 25, 336–338 (1952).

    Google Scholar 

  • Bedford, E. L., and J. Myers: Some effects of ultraviolet radiations on the metabolism of Chlorella. J. Cellul. a. Comp. Physiol. 38, 217–243 (1951).

    Article  Google Scholar 

  • Reinert, J.: Über die Wirkung von Riboflavin und Carotin beim Phototropismus von Avena-Koleoptilen und bei anderen pflanzlichen Lichtreizreaktionen. Z. Bot. 41, 103–121 (1953).

    CAS  Google Scholar 

  • Reinholz, E.: Beiträge zur Kenntnis der indirekten Strahlenwirkung. I. Röntgenbestrahlung biologischer Objekte in fester Phase. Strahlenther. 95, 131–147 (1954).

    CAS  Google Scholar 

  • Reiter, R.: Die Bedeutung extrem langwelliger elektromagnetischer Strahlungen in der Bioklimatologie. Strahlenther. 89, 628–633 (1953).

    CAS  Google Scholar 

  • Rice, E. W.: The action of ultraviolet light on the pentose moiety of nucleic acids and related compounds. Science (Lancaster, Pa.) 115, 92–93 (1952).

    CAS  Google Scholar 

  • Rottgardt, K. H. J.: Versuch zu einer Erklärung der Photoreaktivierung von Bacteriophagen. Naturwiss. 40, 169 (1953).

    Article  CAS  Google Scholar 

  • Sagromsky, H.: Lichtinduzierte Ringbildung bei Pilzen. II. Flora (Jena) 139, 560–564 (1952).

    Google Scholar 

  • Sallmann, L. V.: The effects of radiation on the cytology of the eye. J. Cellul. a. Comp. Physiol. 39, Suppl. 2, 217–233 (1952).

    Article  Google Scholar 

  • Samuel, A. H., and J. L. Magee: Theory of radiation chemistry. II. Track effects in radiolysis of water. J. Chem. Phys. 21, 1080–1087 (1953).

    Article  CAS  Google Scholar 

  • Sarachek, A.: Ultraviolett inactivation of Saccharomyces during the budding cycle. Exper. Cell Res. 6, 45–55 (1954).

    Article  CAS  Google Scholar 

  • Sarachek, A., and W. H. Lucke: Ultraviolet inactivation of polyploid Saccharomyces. Arch. of Biochem. a. Biophysics 44, 271–279 (1953).

    Article  CAS  Google Scholar 

  • Sauter, E., u. W. Schwartz: Untersuchungen über die Wirkung ultrakurzer Wellen auf die lebende Bakterienzelle. Arch. Mikrobiol. 10, 189–225 (1939).

    Article  Google Scholar 

  • Schenck, G. O.: [1] Über den photochemischen Primärakt und die anschließende erste Dunkelreaktion der Photosynthese. Naturwiss. 40, 205–212, 229–238 (1953).

    Article  CAS  Google Scholar 

  • [2] Reaction phototropisomerer Radikale in Natur und Technik. Z. Elektrochem. 56, 855–868 (1952).

    Google Scholar 

  • Scheraga, H. A., and L. F. Nims: The action of X-rays on fibrinogen solutions. Arch. of Biochem. a. Biophysics 36, 336–344 (1952).

    Article  CAS  Google Scholar 

  • Scholes, G., and J. Weiss: [1] Chemical action of X-rays on nucleic acids and related substances in aqueous systems. 1. Degradation of nucleic acids and nucleotides by X-rays and by free radicals produced chemically. Biochemie. J. 53, 567–578 (1953).

    CAS  Google Scholar 

  • [2] Chemical action of X-rays on nucleic acids and related substances in aqueous systems. 2. The mechanism of the action of X-rays on nucleic acids in aqueous systems. Biochemie. J. 56, 65–72 (1954).

    Google Scholar 

  • Schreiber, H.: Die Wellenlängenabhängigkeit des lichtbiologischen Effektes. Strahlenther. 77, 243–258 (1948).

    CAS  Google Scholar 

  • Schröder, H.: Untersuchungen über die Beeinflussung des Blütenfarbmusters von Petunia hybrida grandiflora hört. Jb. Bot. 79, 714–752 (1934).

    Google Scholar 

  • Serres, F. J. de, and N. H. Giles: The effect of radiation dose fractionation on chromosome aberration frequencies in Tradescantia microspores. I. Studies with X-rays. Genetics 38, 407–415 (1953).

    PubMed  Google Scholar 

  • Setlow, R., and B. Doyle: [1] The effect of temperature on the direct action of ionizing radiation on catalase. Arch. of Biochem. a. Biophysics 46, 46–52 (1953).

    Article  CAS  Google Scholar 

  • [2] The effect of temperature and ultraviolet radiation on dry catalase. Bull. Amer. Phys. Soc. 28, 70 (1953).

    Google Scholar 

  • [3] The combined effect of temperature and ultraviolet radiation on dry catalase. Arch. of Biochem. a. Biophysics 46, 31–38 (1953).

    Google Scholar 

  • [4] The effect of temperature on the ultraviolet light inactivation of trypsin. Arch. of Biochem. a Biophysics 48, 441–447 (1954).

    Google Scholar 

  • Sherman, F. G., and H. B. Chase: Effects of ionizing radiations on enzyme activities of yeast cells. II. Influence of dilution on X-ray induced inhibition of anaerobic CO2 production and colony formation. J. Cellul. a. Comp. Physiol. 34, 207–219 (1949).

    Article  CAS  Google Scholar 

  • Shugar, D.: [1] Ultra-violet irradiation of triosephosphate dehydrogenase. Biochim. et Biophysica Acta 6, 548–561 (1951).

    Article  CAS  Google Scholar 

  • [2] Photoreactivation in the near ultraviolett of d-Glyceraldehyde-3-phosphatedehydrogenase. Experientia (Basel) 7, 26–28 (1951).

    Google Scholar 

  • [3] The measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. Biochim. et Biophysica Acta 8, 302–309 (1952).

    Google Scholar 

  • Siminovitch, L. et S. Rapkine: Modifications biochimiques au cours de développement des bacteriophages chez une bactérie lysogène. C. r. Acad Sci (Paris) 232, 1603–1605 (1951).

    CAS  Google Scholar 

  • Simonis, W.: Physikalisch-chemische Grundlagen der Lebensprozesse (Strahlenbiologie). Fortschr. Bot. 14, (1953 ff.).

    Google Scholar 

  • Sinsheimer, R. L.: [1] The photochemistry of uridylic acid. Radiation Res. 1, 505–513 (1954).

    Article  PubMed  CAS  Google Scholar 

  • [2] Ultraviolet absorption spectra. In A. Hollaender, Radiation biology, Bd. II, S. 165–201. New York: McGraw Hill Book Comp. 1955.

    Google Scholar 

  • Six, E.: Zur Treffertheorie der indirekten Strahlenwirkung. Z. Naturforsch. 9b, 265–273 (1954).

    Google Scholar 

  • Skinner, H. H., and C. J. Bradish: Exposure to light as a source of error in the estimation of the infectivity of virus suspensions. J. Gen. Microbiol. 10, 377–397 (1954).

    PubMed  CAS  Google Scholar 

  • Smith, C. L.: The inactivation of monomolekular films of protein and its relation to the lifetime of active radicals formed in water by X-radiations. Arch. of Biochem. a. Biophysics 50, 322–336 (1954).

    Article  CAS  Google Scholar 

  • Sommermeyer, K.: Quantenphysik der Strahlenwirkung in Biologie und Medizin. Leipzig: Grest & Portig K.-G. 1952.

    Google Scholar 

  • Sparrow, A. H., and B. A. Rubin: Effects of radiations on biological systems. In: Survey of Biological Progress, Bd. II, S. 1–52. New York: Acad. Press. Inc. Publ. 1952.

    Google Scholar 

  • Sparrow, A. H., M. J. Moses and R. Steele: A cytological and cytochemical approach to an understanding of radiation damage in dividing cells. Brit. J. Radiol. 25, 182–189 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Stålfelt, M. L.: The influence of light upon the viscosity of protoplasm. Ark. Bot. 33A, 1–17 (1947).

    Google Scholar 

  • Stapleton, G. E. and C. W. Edington: Temperature dependence of bacterial inactivation by X-rays. Radiation Res. 1, 229 (1954).

    Google Scholar 

  • Stapleton, G. E., and A. Hollaender: Mechanism of lethal and mutagenic action of ionizing radiations on Aspergillus terreus. II. Use of modifying agents and conditions. J. Cellul. a. Comp. Physiol. 39, 101–114 (1952).

    CAS  Google Scholar 

  • Stapleton, G. E., D. Bdllen and A. Hollaender: [1 ] The role of enzymatic oxygen removal in chemical protection against X-ray inactivation of bacteria. J. Bacter. 63, 805–812 (1952).

    CAS  Google Scholar 

  • [2] Recovery of X-irradiated bacteria at suboptimal incubation temperatures. J. Cellul. a. Comp. Physiol. 41, 345–357 (1953).

    Google Scholar 

  • Stein, W., u. W. Harm: [1] Wärmeaktivierung, „spontan“-inaktiver und UV-inaktivierter Colibakterien. Naturwiss. 39, 113 (1952).

    Article  Google Scholar 

  • [2] Wärmeaktivierung von Coli-Bakterien nach Inaktivierung durch UV-bestrahlten Bouülon-Agar. Naturwiss. 39, 383 (1952).

    Google Scholar 

  • [3] Modellvorstellungen zur UV-Inaktivierung von Colibakterien im Licht von Reaktivierungseffekten. Z. Naturforsch. 8b, 742–754 (1953).

    Google Scholar 

  • Stein, W., u. I. Meutzner: Reaktivierung von UV-inaktiviertem Bacterium coli durch Wärme. Naturwiss. 37, 167–168 (1950).

    Article  Google Scholar 

  • Stone, W. S., F. Haas, J. B. Clark and O. Wyss: The role of mutation and of selection in the frequency of mutants among microorganisms grown on irradiated substrate. Proc. nat. Acad. Sci. U.S.A. 34, 142–149 (1948).

    Article  CAS  Google Scholar 

  • Straub J.: Das Licht bei der Auslösung der Fruchtkörperbildung von Didymium eunigripes und die Übertragung der Lichtwirkung durch das tote Plasma. Naturwiss. 41, 219–220 (1954).

    Article  Google Scholar 

  • Swallow, A. J.: The radiation chemistry of ethanol and diphosphopyridinnucleotide and its bearing in dehydrogenase action. Biochemic. J. 54, 253–257 (1953).

    CAS  Google Scholar 

  • Swanson, C. P., and L. J. Stadler: The effect of ultraviolet radiation on the genes and chromosomes of higher organisms. In: A. Hollaender, Radiation biology, Bd. II, S. 249–284. New York: McGraw Hill Book Comp. 1955.

    Google Scholar 

  • Swart-Füchtbauer, H., u. A. Rippel-Baldes: Die bactericide Wirkung des Sonnenlichtes. Arch. Mikrobiol. 16, 358–362 (1951).

    Article  Google Scholar 

  • Swenson, P. A.: The action spectrum of the inhibition of galactozymase production by ultraviolet light. Proc. Nat. Acad. Sci. U.S.A. 36, 699–703 (1950).

    Article  CAS  Google Scholar 

  • Swenson, P. A., and A. C. Giese: Photoreactivation of galactocymase formation in yeast. J. Cellul. a. Comp. Physiol. 36, 369–380 (1950).

    Article  CAS  Google Scholar 

  • Tanada, T., and S. B. Hendricks: Photoreversal of ultraviolet effects in soybean leaves. Amer. J. Bot. 40, 634–637 (1953).

    Article  Google Scholar 

  • Tappeiner, H. V.: Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe). Erg. Physiol. 8, 698–741 (1909).

    Article  Google Scholar 

  • Tappeiner, H. V., u. A. Jodlbauer: Die sensibilisierende Wirkung fluoreszierender Substanzen. Leipzig: F. C. W. Vogel 1907.

    Google Scholar 

  • Thoday, J. M., and J. Read: Effect of oxygen on the frequency of chromosome aberrations produced by α-rays. Nature (Lond.) 163, 133 (1949).

    Article  CAS  Google Scholar 

  • Timoféeff-Ressovsky, N. W., u. K. G. Zimmer: Das Trefferprinzip in der Biologic Leipzig: S. Hirzel 1947.

    Google Scholar 

  • Tobias, C. A.: The dependence of some biological effects of radiation on the rate of energy loss. Symposium on Radiobiology, ed. by Nickson, S. 357–384. New York: John Wiley & Sons, Inc. 1952.

    Google Scholar 

  • Todd, G. W., and A. W. Galston: A porphyrin pigment from photosensitive non chlorophyllous plant tissues. Plant Physiol. 29, 311–318 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, N. E., and R. H. Burris: Light motivation of the plant enzyme which oxidises glycolic acid. J. of Biol. Chem. 186, 791–804 (1950).

    CAS  Google Scholar 

  • Torrey, J. G.: Effects of light on elongation and branching in pea roots. Plant Physiol. 27, 591–602 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Trowell, O. A.: The effect of environmental factors on the radiosensitivity of lymph nodes cultured in vitro. Brit. J. Radiol. 26, 302–309 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Uber F. M.: Biophysical Research methods. New York: Intersci. Publ. 1950.

    Book  Google Scholar 

  • Virgin, H. J.: [1] The effect of light on the protoplasmatic viscosity. Physiol. Plantarum (Copenh.) 4, 255–357 (1951).

    Article  Google Scholar 

  • [2] Further studies of the action spectrum for light induced changes in the protoplasmic viscosity of Helodea densa. Physiol. Plantarum (Copenh.) 7, 343–353 (1954).

    Google Scholar 

  • Voerkel, H.: Untersuchungen über die Phototaxis der Chloroplasten. Planta (Berl.) 21, 156–205 (1934).

    Article  Google Scholar 

  • Wagner, R., C. H. Haddox, R. Fürst and W. S. Stone: The effect of irradiated medium, cyanide and peroxide on the mutation rate in Neurospora. Genetics 35, 237–248 (1950).

    PubMed  CAS  Google Scholar 

  • Wahl, R. und R. Latarjet: Inactivation de bacteriophages par les radiations de grande longueurs d’onde (3,600–6,000 Å) Ann. Inst. Pasteur 73, 957–971 (1947).

    CAS  Google Scholar 

  • Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. I und II. Biochem. Z. 100, 230–270 (1919); 103, 188–217 (1920).

    CAS  Google Scholar 

  • Warburg, O., and V. Schokken: A manometric actinometer for the visible spectrum. Arch. of Biochem. a. Biophysics 21, 363–369 (1949).

    CAS  Google Scholar 

  • Wassink, E. C, and J. A. Stolwijk: Effects of light narrow spectral regions on growth and development of plants. I und II. Proc. Kon. Ned. Akad. v. Wetensch., Sect. Sci (C) 55, 471–480, 481–488 (1952).

    Google Scholar 

  • Waters, W. A.: Chemistry of free radicals. Oxford 1948.

    Google Scholar 

  • Watson, J. D.: The properties of X-ray inactivated bacteriophage. II. Inactivation by indirect effects. J Bacter. 63, 473–485 (1952).

    CAS  Google Scholar 

  • Weber, F.: Plasmolyse-zeit und Lichtwirkung. Protoplasma 7, 256–258 (1929).

    Article  Google Scholar 

  • Weil, L., u. A. R. Buchert: Photooxydation of crystalline/Mactoglobuline in the presence of methylene blue. Arch. of Biochem. a. Biophysics 34, 1–15 (1951).

    Article  CAS  Google Scholar 

  • Weil, L., W. G. Gordon and A. R. Buchert: Photooxidation of amino acids in the presence of methylene blue. Arch. of Biochem. a. Biophysics 33, 90–109 (1951).

    Article  CAS  Google Scholar 

  • Weiss, J.: [1] Über das Auftreten eines metastabilen, aktiven Sauerstoffmoleküls bei sensibilisierten Photooxydationen. Naturwiss. 23, 610 (1935).

    Article  CAS  Google Scholar 

  • [2] Photochemical reactions of SH-Compounds in solutions. Nature (Lond.) 137, 71–72 (1936).

    Google Scholar 

  • [3] Photochemical oxydation-réduction processes in aqueous systems. Symposia Soc. Exper. Biol. 5, 141–151 (1951).

    Google Scholar 

  • [4] Possible biological significance of the action of ionizing radiations on nucleic acids. Nature (Lond.) 169, 460–461 (1952).

    Google Scholar 

  • Wels, P.: Grundlagen der biologischen Strahlenwirkung. Arch, exper. Path. u. Pharmakol. 208, 116–133 (1949).

    Article  CAS  Google Scholar 

  • Welsh, J. N. and M. H. Adams: Photodynamic inactivation of bacteriophage. J. Bacter. 68, 122–127 (1954).

    CAS  Google Scholar 

  • Werfft, R.: Über die Lebensdauer der Pollenkörner in der freien Atmosphäre. Biol. Zbl. 70, 354–367 (1951).

    Google Scholar 

  • Weymouth, P. P. and H. S. Kaplan: Effect of X-radiation on lymphoid tissue nucleic acids in C57 black mice. Cancer Res. 12, 307 (1952).

    Google Scholar 

  • Writaker, D. M.: Physical factors of growth. Growth, Suppl. 1940, 75–90.

    Google Scholar 

  • Whitehead, H. A.: The protection of bacteria against radiation effects. Science (Lancaster, Pa.) 116, 459–460 (1952).

    CAS  Google Scholar 

  • Windisch, F., W. Heumann, H. Kriegel u. A. Graffi: Untersuchungen an Hefezellen über die Abhängigkeit des photodynamischen Effektes vom molekularen Sauerstoff. Z. Naturforsch. 8b, 673–675 (1953).

    CAS  Google Scholar 

  • Wolff, S., and K. C. Atwood: Independent X-ray effects on chromosome breakage and reunion. Proc. Nat. Acad. Sci. U.S.A. 40, 187–192 (1954).

    Article  CAS  Google Scholar 

  • Wood, Th. H.: Influence of low temperature and phase states on X-ray sensitivity of yeast. Radiation Res. 1, 234 (1954).

    Google Scholar 

  • Wuhrmann-Meyer, K., u. W.: Untersuchungen über die Absorption ultravioletter Strahlen durch Cuticular- und Wachsschichten von Blättern. Planta (Berl.) 32, 43–50 (1941).

    Article  CAS  Google Scholar 

  • Wyckoff, R. M. G.: The killing of certein bacteria by X-rays. J. of Exper. Med. 52, 435 (1930).

    Article  CAS  Google Scholar 

  • Wyss, O., F. Haas, J. B. Clark and W. S. Stone: Some effects of ultraviolet irradiation on microorganisms. J. Cellul. Physiol. 35 Suppl. 1, 133–140 (1950).

    CAS  Google Scholar 

  • Yost jr., H. T., J. Cummings and A. F. Blakeslee: The effect of fast neutron radiation from a nuclear detonation on chromosome aberation in Datura. Proc. Nat. Acad. Sci. U.S.A. 40, 447–451 (1954).

    Article  CAS  Google Scholar 

  • Zelle, M. R., and A. Hollaender: Monochromatic ultraviolett action spectra and quantum yields for inactivation of T1 and T2 E. coli bacteriophages. J. Bacter. 68, 210–215 (1954).

    CAS  Google Scholar 

  • Ziegler, H.: Beeinflussung der Atmungsintensität pflanzlicher Gewebe durch eine Belichtung in fluoreszierenden Farbstofflösungen. Z. Naturforsch. 5b, 345–350 (1950).

    CAS  Google Scholar 

  • Zirkle, R. E.: [1] Speculations on cellular actions of radiations. Symposium on Radiobiology ed. by Nickson, S. 333–356. New York 1952.

    Google Scholar 

  • [2] The radiological importance of linear energy transfer. In A. Hollaender, Radiation biology, Bd. I, Teü 1, S. 315–350. New York u. London: McGraw Hill Book Comp. Inc. 1954.

    Google Scholar 

  • Zirkle, R. E., and W. Bloom: Irradiation of parts of individual cells, Science (Lancaster, Pa.) 117, 487–493 (1953).

    CAS  Google Scholar 

  • Zirkle, R. E., and C. A. Tobias: Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch. of Biochem. a. Biophysics 47, 282–306 (1953).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Simonis, W. (1956). Die Wirkung von Licht und Strahlung auf die Zelle. In: Bahr, G.F., et al. Allgemeine Physiologie der Pflanzenzelle / General Physiology of the Plant Cell. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94676-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94676-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94677-6

  • Online ISBN: 978-3-642-94676-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics