Advertisement

Die Wirkung von Licht und Strahlung auf die Zelle

  • W. Simonis
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)

Zusammenfassung

In dem vorliegenden Abschnitt sollen die Grundlagen der Wirkungen von Licht und Strahlung auf biologische Objekte, besonders auf die einzelne Zelle, dargestellt werden. Hierüber gibt es eine höchst ausgedehnte Literatur, die insgesamt zu behandeln völlig unmöglich ist. Abgesehen von den später erwähnten Originalarbeiten und Zusammenfassungen einzelner Gebiete sei auf die folgenden, grundlegenden Werke hingewiesen: Dessauer [2], Hollaender [2, 3], Lea, Nickson, Rabinowitch [1, 2], Rajewsky, Timoféeff-Ressovsky und Zimmer, Sommermeyer. Allgemeine Zusammenfassungen finden sich besonders in Butler und Randall (Progress in Biophysics and Biophysical Chemistry), sowie in den Fortschritten der Botanik (Simonis).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams, W. R., and E. Pollard: Combined thermal and primary ionization effects on a bacterial virus. Arch, of Biochem. a. Biophysics 36, 311–322 (1952).CrossRefGoogle Scholar
  2. Aldous, J. G., and D. K. R. Stewart: The effect of ultraviolet radiation upon enzymatic activity and viability of the yeast cell. Canad. J. Med. Sci. 30, 561–570 (1952).Google Scholar
  3. Alexander, P.: A physicochemical method of testing the protective action of chemical compounds against the lethal effects of ionizing radiations. Brit. J. Radiol. 26, 413–416 (1953).PubMedCrossRefGoogle Scholar
  4. Allen, A. O.: The yields of free H and OH in the irradiation of water. Radiation Res. 1, 85–96 (1954).PubMedCrossRefGoogle Scholar
  5. Allen, A. O., C.J. Hochanadel, I.A. Ghormley and T. W. Davis: Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation. J. Physic. Chem. 56, 575–586 (1952).CrossRefGoogle Scholar
  6. Allen, E. G., M. R. Bovarnick and J. C. Snyder: The effect of irradiation with ultraviolet light on various properties of typhus rickettsiae. J. Bacter. 67, 718–723 (1954).Google Scholar
  7. Alper, T.: [1] Hydrogen peroxide and the indirect effect of ionizing radiations. Nature (Lond.) 162, 615–616 (1948).CrossRefGoogle Scholar
  8. [2] A new after-effect of X-rays on dilute aqueous suspensions of bacteriophage. Nature (Lond.) 169, 964–965 (1952).Google Scholar
  9. [3] The indirect inactivation of bacteriophage S 13 during and after exposure to ionizing radiations. Nature (Lond.) 169, 183–184 (1952.Google Scholar
  10. [4] The inactivation of free bacteriophage by irradiation and by chemical agents. J. Gen. Microbiol. 11, 313–324 (1954).Google Scholar
  11. Altenburg, L. S., and E. Altenburg: The lowering of the mutagenic effectiveness of ultraviolet by photoreactivating light in Drosophila. Genetics 37, 545–553 (1952).PubMedGoogle Scholar
  12. Anderson, E. H.: Heat reactivation of ultraviolet inactivated bacteria. J. Bacter. 61, 389–394 (1951).Google Scholar
  13. Appleyard, R. K.: [1] The inactivation of dried hemoglobins by fast charged particles. Arch, of Biochem. a. Biophysics 35, 121–131 (1952).CrossRefGoogle Scholar
  14. [2] The irradiation of dried hemoglobins by fast charged particles. II. Arch, of Biochem. a. Biophysics 40, 111–126 (1952).Google Scholar
  15. Auerbach, C.: The chemistry of biological after-effects of ultraviolet and ionizing radiations. Brit. J. Radiol. 26, 212–213 (1953).CrossRefGoogle Scholar
  16. Bachofer, C. S., C. F. Ehret, S. Mayer and E. L. Powers: The influence of temperature upon the inactivation of a bacterial virus by X-rays. Proc. Nat. Acad. Sci. U.S.A. 39, 744–750 (1953).CrossRefGoogle Scholar
  17. Backus, G. E., and A. R. Schrank: Electrical and curvature responses of the Avena coleoptile to unilateral illumination. Plant Physiol. 27, 251–262 (1952).PubMedCrossRefGoogle Scholar
  18. Bacq, Z. M.: Die indirekte Wirkung von Röntgen- und ultravioletten Strahlen. Experientia (Basel) 7, 11–19 (1951).CrossRefGoogle Scholar
  19. Bacq, Z. M., u. A. Herve: Ein chemischer Schutz gegen Röntgenstrahlen. Strahlenther. 95, 215–237 (1954).Google Scholar
  20. Baker, W. K., and E. V. Halle: The production of dominant lethals in Drosophila by fast neutrons from cyclotron irradiation and nuclear detonations. Science (Lancaster, Pa.) 119, 46–49 (1954).Google Scholar
  21. Bannister, T. T.: Energy transfer between chromophore and protein in phycocyanin. Arch. of Biochem. a. Biophysics 49, 222–233 (1954).CrossRefGoogle Scholar
  22. Barron, E. S. G.: [1] The effect of ionizing radiations on some systems of biological importance. Symposium on Radiobiology, ed. by J. J. Nickson. New York: John Wiley & Sons Inc. 1952.Google Scholar
  23. [2] The effect of X-rays on systems of biological importance. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 283–313. New York u. London 1954.Google Scholar
  24. [3] The role of free radicals and oxygen in reactions produced by ionizing radiations. Radiation Res. 1, 109–124 (1954).Google Scholar
  25. Barron, E. S. G., and P. Finkelstein: Studies on the mechanism of action of ionizing radiations. X. Effect of X-rays on some physicochemical properties of proteins. Arch. of Biochem. a. Biophysics 41, 212–232 (1952).CrossRefGoogle Scholar
  26. Barron, E. S. G., and Ph. Johnson: Studies on the mechanism of action of ionizing radiations. XL Inactivation of yeast alcohol dehydrogenase by X-irradation. Arch. of Biochem. a. Biophysics 48, 149–153 (1954).CrossRefGoogle Scholar
  27. Barron, E. S. G., and S. Levine: Oxydation of alcohols by yeast alcohol dehydrogenase and by the living cell. The thiol groups of the enzyme. Arch. of Biochem. a. Biophysics 41, 175–187 (1952).CrossRefGoogle Scholar
  28. Barron, E. S. G., and S. L. Seki: Studies on the mechanism of action of ionizing radiations. VII. Cellular respiration, cell division and ionizing radiations. J. Gen. Physiol. 35, 865–872 (1952).PubMedCrossRefGoogle Scholar
  29. Barron, E. S. G., Ph. Johnson and A. Cobure: Effect of X-irradiation on the absorption of purines and pyrimidines. Radiation Res. 1, 410–425 (1954).PubMedCrossRefGoogle Scholar
  30. Bawden, F. C., and A. Kleczkowski: Ultraviolet injury to higher plants counteracted by visible light. Nature (Lond.) 169, 90–91 (1952).CrossRefGoogle Scholar
  31. Beaven, G. H., and E. R. Holiday: Ultraviolet absorption spectra of proteins and amino acids. Adv. Protein Chem. 7, 319–386 (1952).PubMedCrossRefGoogle Scholar
  32. Berger, H., F. L. Haas, O. Wyss and W. S. Stone: Effect of sodium azide on radiation damage and photoreactivation. J. Bacter. 65, 538–543 (1953).Google Scholar
  33. Bernstein, M. H.: Deoxyribonucleoproteins of cell nuclei: Sensitivity to X-rays. Nature (Lond.) 174, 463 (1954).CrossRefGoogle Scholar
  34. Beth, K.: Experimentelle Untersuchungen über die Wirkung des Lichtes auf die Formbildung von kernhaltigen und kernlosen Acetabularia-Zellen. Z. Naturforsch. 8b, 334–342 (1953).Google Scholar
  35. Biebl, R.: [1] Wirkung der UV-Strahlung auf Allium-Zellen. Protoplasma 36, 491–513 (1942).CrossRefGoogle Scholar
  36. [2] Resistenz der Meeresalgen gegen sichtbares Licht und gegen kurzwellige UV-Strahlen. Protoplasma 41, 353–377 (1952).Google Scholar
  37. Bier, M., and F. F. Nord: On the mechanism of enzyme action XLVII. Effects of high intensity electron bombardment on crystalline trypsin. Arch. of Biochem. a. Biophysics 35, 204–215 (1952).CrossRefGoogle Scholar
  38. Bora, K. C.: Delayed effects in chromosome breakage by X-rays in Tradescantia bracteata. J. Genet. 52, 140–151 (1954).CrossRefGoogle Scholar
  39. Blau, M., u. K. Altenburger: Über einige Wirkungen von Strahlen. II. Z. Physik 12, 315–329 (1922).CrossRefGoogle Scholar
  40. Blout, E. R.: Ultraviolet microscope and ultraviolet microspectroscopy. Adv. Biol. a. Med. Physics 3, 285–336 (1953).Google Scholar
  41. Blum, H. F., J. S. Cook and G. M. Loos: [1] A comparison of five effects of ultraviolet light on the Arbacia egg. J. Gen. Physiol. 37, 313–324 (1954).PubMedCrossRefGoogle Scholar
  42. Blum, H. F., E. F. Kauzmann and G. B. Chapman: [2] Ultraviolet light and the mitotic cycle in the Sea Urchins egg. J. Gen. Physiol. 37, 325–333 (1954).PubMedCrossRefGoogle Scholar
  43. Blum, H. F., J. C. Robinson and G. M. Loos: [3] The loci of action of ultraviolet and X-radiation and of photorecovery in the egg and sperm of the Sea Urchin Arbacia punctulata. J. Gen. Physiol. 35, 323–342 (1951).PubMedCrossRefGoogle Scholar
  44. Borthwick, H. A., M. W. Parker and S. B. Hendricks: [1] Recent developments in the control of flowering by photoperiod. Amer. Naturalist 84, 117–134 (1950).CrossRefGoogle Scholar
  45. Borthwick, H.A., S. B. Hendricks and M. W. Parker: [2] Action spectrum for inhibition of stem growth in dark grown seedlings of albino and nonalbino barley. Bot. Gaz. 113, 95–105 (1952).CrossRefGoogle Scholar
  46. Bowen, E. J.: [1] The chemical aspects of light, 3. Aufl. Oxford: Clarendon Press 1949.Google Scholar
  47. [2] Resonance transfer of energy between molecules. Symposia Soc. f. Exper. Biol. 5, 152–159 (1951).Google Scholar
  48. Bottelier, H. B.: Über den Einfluß äußerer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Ree. Trav. Bot. néerl. 31, 474–582 (1934).Google Scholar
  49. Boyle, A. C., H. F. Cook and T. J. Buchanan: The effects of microwaves. A prehminary investigation. Brit. J. Physic. Med., N. S. 13, 2–9 (1950).Google Scholar
  50. Brandt, C. L., P. J. Freemann and P. A. Swenson: The effect of radiations on galactocymase formation in yeast. Science (Lancaster, Pa.) (N. Y.) 113, 383–384 (1950).CrossRefGoogle Scholar
  51. Brauer, L: Experimentelle Untersuchungen über die Wirkung von Meterwellen verschiedener Feldstärke auf das Teilungswachstum der Pflanzen. Chromosoma (Wien) 3, 483–509 (1950).CrossRefGoogle Scholar
  52. Brauner, L.: Untersuchungen über die Photolyse des Heteroauxins I. Z. Bot. 41, 291–342 (1953).Google Scholar
  53. Brauner, L., u. M. Brauner: [1] Untersuchungen über den photoelektrischen Effekt in Membranen I. Protoplasma 28, 230–261 (1937).CrossRefGoogle Scholar
  54. [2] Untersuchungen über die Photolyse des Heteroauxins II. Z. Bot. 42, 83–124 (1954).Google Scholar
  55. Bresch, C.: Zur Reaktivierung von Bacteriophages 1. Mitteilung. Z. Natunorsch. 5b, 420–422 (1950).Google Scholar
  56. Brode, W. R.: The absorption spectra of vitamins, hormones and enzymes. Adv. Enzymol. 4, 269–311 (1946).Google Scholar
  57. Brown, S. O.: Relation between light and the electric polarity of Chara. Plant. Physiol. 13, 713–736 (1938).PubMedCrossRefGoogle Scholar
  58. Bücher, Th.: Probleme des Energietransportes innerhalb lebender Zellen. Adv. Enzymol. 14, 1–48 (1953).Google Scholar
  59. Bünning, E.: [1] Physikalischchemische Grundlagen der biologischen Vorgänge. Fortschr. Bot. 11, 128–145 (1944).Google Scholar
  60. [2] Entwicklungs- und Bewegungsphysiologie der Pflanze, 3. Aufl. Berlin: Springer 1953.Google Scholar
  61. Bünning, E., u. D. v. Wettstein: Polarität und Differenzierung an Mooskeimen. Naturwiss. 40, 147–148 (1953).Google Scholar
  62. Butler, J. A. V., and J. T. Randall: Progress in biophysics and biophysical chemistry, Bd. I und folgende. 1949–1955.Google Scholar
  63. Buy, H. G. Du, and E. L. Nuernbergk: Phototropismus und Wachstum der Pflanzen III. Erg. Biol. 12, 323–543 (1935).Google Scholar
  64. Calcutt, G.: A factor influencing the intracellular exposure of sulphhydryl groups. Nature (Lond.) 166, 443–444 (1950).CrossRefGoogle Scholar
  65. Caldas, L. R., et Th. Constantin: Courbes de survie de levures haploides et de diploides soumises aux rayons ultraviolets. C. r. Acad. Sci. (Paris) 232, 2356–2358 (1951).Google Scholar
  66. Caldecott, R. S.: [1] Inverse relationship between the water content of seeds and their sensitivity of X-rays. Science (Lancaster, Pa.) 120, 809–810 (1954).Google Scholar
  67. [2] Effect of ionizing radiation on seeds of barley. Radiation Res. 1, 490 (1954).Google Scholar
  68. Canzanelli, A., R. Guild and D. Rapport: Ammonia and urea production and changes in absorption spectra of nucleic acid derivatives following ultraviolet irradiation. Amer. J. Physiol. 167, 364–374 (1951).PubMedGoogle Scholar
  69. Carlson, J. G.: Immediate effects on divisions, morphology and viability of the cell. In Hollaender, Radiation Biology, Bd. I, Teil 2, S. 763–824. 1954.Google Scholar
  70. Caspersson, T. O.: Cell growth and cell function. New York: W. W. Norton & Comp. Inc. 1950.Google Scholar
  71. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 461–469 (1954).Google Scholar
  72. Conrad, W. E.: The isolation of oxamide and parabanic acid from the products of ultraviolet irradiated uracil. Radiation Res. 1, 523–529 (1954).PubMedCrossRefGoogle Scholar
  73. Courcy jr., S. J. de, J. O. Ely and M. H. Ross: Effect of ultraviolet light on deoxyribonucleic acid in rat thymocytes. Nature (Lond.) 172, 119 (1953).CrossRefGoogle Scholar
  74. Crowther, J. A.: Some considerations relative to the action of X-rays on tissue cells. Proc. Roy. Soc. Lond. 96, 207 (1924).CrossRefGoogle Scholar
  75. Dale, W. M.: [1] Some aspects of the biochemical effects of ionizing radiations. Symposium on Radiobiology, ed. by J. J. Nickson, S. 177–188. New York: John Wiley & Sons Inc. 1952.Google Scholar
  76. [2] The indirect action of ionizing radiations on aqueous solutions and its dépendance on the chemical structure of the substrate. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 39–56 (1952).Google Scholar
  77. [3] Basic radiation biochemistry. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 255–281. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  78. Daniel, G., and H. Park: Glutathion and X-ray injury in hydra and paramaecium. J. Cellul. a. Comp. Physiol. 42, 359–367 (1953).CrossRefGoogle Scholar
  79. Daniels, M., G. Scholes and J. Weiss: After-effect in aqueous solutions of deoxyribonucleic acid irradiated with X-rays. Nature (Lond.) 171, 1153 (1953).CrossRefGoogle Scholar
  80. Dannenberg, M.: Zur Systematik der Ultraviolettabsorption I. Über substituierte Acetophenone, Benzoesäuren und Zimtsäuren. Z. Naturforsch. 4b, 327–344 (1949).Google Scholar
  81. Davies, H. G., and P. M. B. Walker: Microspectrometry of Irving and fixed cells. Progr. Biophysics a. Biophysical Chem. 3, 195–236 (1953).Google Scholar
  82. Debye, P., and J. V. Edwards: A note on the phosphorescence of proteins. Science (Lancaster, Pa.) 116, 143–144 (1952).Google Scholar
  83. Denffer, D. V., u. A. Fischer: Papierchromatographischer Nachweis des ß-Indolaldehyds in photolytisch zersetzter IES-Lösung. Naturwiss. 39, 549–550 (1952).CrossRefGoogle Scholar
  84. Dessauer, F.: [1] Über einige Wirkungen von Strahlen I. Z. Physik 12, 38–47 (1922).CrossRefGoogle Scholar
  85. [2] Quantenbiologie. Berlin: Springer 1954.Google Scholar
  86. Dewhurst, H. A., A. H. Samuel and J. L. Magee: A theoretical survey of the radiation chemistry of water and aqueous solution. Radiation Res. 1, 62–84 (1954).PubMedCrossRefGoogle Scholar
  87. Dittrich, W., u. G. Schubert: Der Wirkungsmechanismus schneller Elektronen in biologischer Materie. Strahlenther. 92, 532–554 (1953).Google Scholar
  88. Doniach, J., A. Howard and S. R. Pelc: Autoradiography. Progr. Biophysics a. Biophysical Chem. 3, 1–26 (1953).Google Scholar
  89. Doty, B., and E. P. Geiduschek: Optical properties of proteins. In H. Neurath and K. Bailey, The proteins, S. 393–460. New York 1953.Google Scholar
  90. Drebinger, K.: [1] Kerngifte und Lichtstrahlung. Eine Studie an Froschspermien zur Wirkungsanalyse der Kerngifte. Roux’ Arch. 145, 174–204 (1951).CrossRefGoogle Scholar
  91. [2] Die an das Licht gebundene Kernschädigung der Kerngifte des Trypoflavintyps. Roux’ Arch. 147, 128–130 (1954).Google Scholar
  92. Duggar, B. M.: Biological effects of radiation. New York u. London 1936.Google Scholar
  93. Dulbecco, R.: [1] Reactivation of ultraviolet inactivated bacteriophages by visible light. Nature (Lond.) 163, 949–950 (1949).CrossRefGoogle Scholar
  94. [2] Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bacter. 59, 329–347 (1950).Google Scholar
  95. [3] Experiments on photoreactivation of inactive bacteriophages. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 125–128 (1952).Google Scholar
  96. [4] Photoreactivation. In A. Hollaender, Radiation biology, Bd. II, S. 455–486. New York: McGraw Hill Book Comp. Inc. 1955.Google Scholar
  97. Elwert, G., J. Reinert u. W. Mitlacher: Zur Frage des Einflusses von Meterwellen auf Keimungs- und Wachstumsvorgänge bei Pflanzen. Z. Naturforsch. 7b, 109–112 (1952).Google Scholar
  98. Engel, O.S.: Veränderungen der Strahlenempfindhchkeit der Weizensamen. Dokl. Akad. Nauk SSSR., N.S. 85, 229–231 (1952).Google Scholar
  99. Ehreberg, L., Å. Gustafsson, U. Lundquist and N. Nybom: Irradiation effects, seed soaking and oxygen pressure in barley. Hereditas (Lund) 39, 493–504 (1953).CrossRefGoogle Scholar
  100. Errera, M.: [1] Mécanismes de l’action des radiations sur le noyau cellulaire. Ann. Soc. roy. Sci. méd. et natur. Brüx. 5, 65–176 (1952).Google Scholar
  101. [2] Etude photochimique de l’acide désoxyribonucleique. I. Measures énergétiques. II. Etude des produites de la photolyse. Biochim. et Biophysica Acta 8, 30–37, 115–124 (1952).Google Scholar
  102. [3] Mechanism of biological action of ultraviolet and visible radiations. Progr. Biophysics a. Biophysical Chem. 3, 88–130 (1953).Google Scholar
  103. Errera, M., et A. Herve: Méchanismes de l’action biologique des radiations. Liège: Desoer; Paris: Masson & Cie. 1951.Google Scholar
  104. Evans, M. G., and N. Uri: The photochemical formation and reactions of atoms and radicals in aqueous systems. Symposia Soc. f. Exper. Biol. 5, 130–140 (1952).Google Scholar
  105. Fano, U.: Principles of radiological physics. In A. Hollaender, Radiation biology, Bd I, Teil 1, S. 1–144. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  106. Ferri, M. G.: Fluorescence and photoinactivation of indolacetic acid. Arch. Biochim. 31, 127–131 (1951).CrossRefGoogle Scholar
  107. Fitting, H.: Untersuchungen über die Induktion der Dorsiventralität bei den Brutkörperkeimlingen der Marchantieen. III. Jb. wiss. Bot. 85, 169–242 (1937).Google Scholar
  108. Föckler, H.: Über den Einfluß des Lichtes auf die Atmung farbloser und assimilierender Gewebe und seine Rolle beim „funktionellen Sonnenstich“. Jb. wiss. Bot. 87, 45–92 (1938).Google Scholar
  109. Förster, Th.: [1] Farbe und Konstitution organischer Verbindungen vom Standpunkt der modernen physikalischen Theorie. Z. Elektrochem. 45, 548–573 (1939).Google Scholar
  110. [2] Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck & Ruprecht 1951.Google Scholar
  111. Forssberg, A.: On the possibility of protecting the living organism against roentgen rays by chemical means. Acta radiol. (Stockh.) 33, 296–304 (1950).CrossRefGoogle Scholar
  112. Forssberg, A., and N. Nybom: Combined effects of cystein and irradiation on growth and cytology of Allium cepa roots. Physiol. Plantarum (Copenh.) 6, 78–95 (1953).CrossRefGoogle Scholar
  113. Franck, J.: A critical survey of the physical background of photosynthesis. Annual Rev. Plant Physiol. 2, 53–86 (1951).CrossRefGoogle Scholar
  114. Franck, J., and C. S. French: Photooxydation processes in plants. J. Gen. Physiol. 25, 309–324 (1941).PubMedCrossRefGoogle Scholar
  115. Franck, J., and R. Platzman: Physical principles underlying photochemical radiation. Chemical and radiobiological reactions. In A. Hollaender, Radiation biology, Bd. I, Teil 1, S. 191–253. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  116. Freemann, P. J., and A. C. Giese: Photodynamic effects on metabolism and reproduction in yeast. J. Cellul. a. Comp. Physiol. 39, 301–322 (1952).CrossRefGoogle Scholar
  117. French, C. S., and V. K. Young: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. Gen. Physiol. 35, 873–890 (1952).PubMedCrossRefGoogle Scholar
  118. Freytag, H.: Möglichkeit einer Photosynthese von Pyridin-Derivaten. Z. Naturforsch. 3b, 465–466 (1948).Google Scholar
  119. Fritz Niggli, H.: Unterschiedliche Wirksamkeit der 180 keV- und 31 MeV-Strahlen auf die Letalität von C 57-Mäusen. Experientia (Basel) 10, 209–210 (1954).CrossRefGoogle Scholar
  120. Gärtner, H., u. K. Peters: Einfluß der Dosis und Dosisleistung von Röntgenstrahlen und schnellen Elektronen auf die Mitosehäufigkeit in Gewebekulturen. Strahlenther. 92, 555–562 (1953).Google Scholar
  121. Gaffron, H.: Über den Mechanismus der Sauerstoffaktivierung durch belichtete Farbstoffe. Biochem. Z. 264, 251–271 (1933).Google Scholar
  122. Galston, A. W.: [1] Riboflavinsensitiv photooxydation of indol-acetic acid and related compounds. Proc. Nat. Acad. Sci. U.S.A. 35, 10–17 (1949).CrossRefGoogle Scholar
  123. [2] Riboflavin, light and the growth of plants. Science (Lancaster, Pa.) 111, 619–624 (1950).Google Scholar
  124. Galston, A. W., and R. S. Baker: [1] Inactivation of enzymes by visible light in the presence of riboflavin. Science (Lancaster, Pa.) 109, 485–486 (1949).Google Scholar
  125. [2] Studies on the physiology of light action II. The photodynamic action of riboflavin. Amer. J. Bot. 36, 773–780 (1949).Google Scholar
  126. [3] Studies on the physiology of light action. V. Photoinductive alteration of auxin metabolism in etiolated peas. Amer. J. Bot. 40, 512–516 (1953).Google Scholar
  127. Galston, A. W., J. Bonner and R. S. Baker: Flavoprotein and peroxidase as components of the indol-acetic acid oxydase system of peas. Arch. of Biochem. a. Biophysics 42, 456–469 (1953).CrossRefGoogle Scholar
  128. Garrison, V. M., H. R. Haymond and B. M. Weeks: Some affects of heavy-particle irradiation of aqueous acetic acid. Radiation Res. 1, 97–108 (1954).PubMedCrossRefGoogle Scholar
  129. Gessner, F.: Die Assimilation vitalgefärbter Chloroplasten. Planta (Berl.) 32, 1–5 (1941).CrossRefGoogle Scholar
  130. Ghormley, J. A., and C. J. Hochanadel: The yields of hydrogen and hydrogen peroxide in the irradiation of oxygen saturated water with cobalt gamma-rays. J. Amer. Chem. Soc. 76, 3351–3352 (1954).CrossRefGoogle Scholar
  131. Giles, N. H.: Radiation induced chromosome aberrations in Tradescantia. In A. Hollaender, Radiation biology, Bd. I, Teil 2, S. 713–762. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  132. Giles jr., N. H., and H. Ph. Riley: Studies on the mechanism of the oxygen effect on the radiosensitivity of Tradescantia chromosomes. Proc. Nat. Acad. Sci. U.S.A. 36, 337–344 (1950).CrossRefGoogle Scholar
  133. Giles, N. H., F. J. de Serres and A. V. Beatty: The effect of radiation dose fractionation on chromosome aberration, frequencies in Tradescantia microspores. II. Studies with fast neutrons. Genetics 38, 416–420 (1953).PubMedGoogle Scholar
  134. Giese, A. C.: [1] Action of ultraviolet radiation on protoplasm. Physiologic. Rev. 30, 431–458 (1950).Google Scholar
  135. [2] Some properties of a photodynamic pigment from Blepharisma. J. Gen. Physiol. 37, 259–269 (1954).Google Scholar
  136. Giese, A. C., C. S. Brandt, R. Iverson and P. H. Wells: [1] Photoreactivation in Colpidium colpoda. Biol. Bull. 103, 336–344 (1952).CrossRefGoogle Scholar
  137. Giese, A. C., R. M. Iverson, D. C. Shepard, C. Jacobson and C. L. Brandt: [2] Quantum relations in photoreactivation of Colpidium. J. Gen. Physiol. 37, 249–258 (1953).PubMedCrossRefGoogle Scholar
  138. Giese, A.C., C. L. Brandt, C. Jacobson, D. C. Shepard and R. T. Sanders: [3] The effect of starvation on photoreactivation in Colpidium colpoda. Physiologie. Zool. 27, 71–78 (1954).Google Scholar
  139. Giri, K. V., G. D. Kalyankar and C. S. Vaidyanathan: Photolysis of metionine in presence of photocatalysis. Naturwiss. 41, 88 (1954).CrossRefGoogle Scholar
  140. Glocker, R.: Quantenphysik der biologischen Röntgenstrahlenwirkung. Z. Physik 77, 653–675 (1932).CrossRefGoogle Scholar
  141. Glubrecht, H.: Über die Wirkung von UV-Strahlen in somatischen Zellen. Z. Naturforsch. 8b, 17–27 (1953).Google Scholar
  142. Graffi, A., H. Kriegel, H. Schreiber u. F. Windisch: Die photosensibilisierende Wirkung verschiedener cancerogener und nicht cancerogener Kohlenwasserstoffe auf die Hefezellen. Z. Naturforsch. 8b, 142–145 (1953).Google Scholar
  143. Granick, S.: Biosynthesis of chlorophyll and related pigments. Ann. Rev. Plant Physiol. 2, 115–144 (1951).CrossRefGoogle Scholar
  144. Gray, L. H.: [1] Biological actions of ionizing radiations. Progr. in Biophysics 2, 240–305 (1951).Google Scholar
  145. [2] The initiation and development of cellular damage by ionizing radiations. Brit. J. Radiol. 26, 609–618 (1953).Google Scholar
  146. [3] Characteristics of chromosome breakage by different agents. Heredity (Lond.) 6 Suppl. 311–315 (1953).Google Scholar
  147. [4] Some characteristics of biological damage induced by ionizing radiations. Radiation Res. 1, 189–213 (1954).Google Scholar
  148. Gros, Ch. M., et P. Mandel: Action d’irradiation totale du rat sur les acides nucléiques de la rate. J. belge Radiol. 35, 357–359 (1952).PubMedGoogle Scholar
  149. Guerrini, G.: Vgl. E. Bünning [1].Google Scholar
  150. Haas, F., J. B. Clark, O. Wyss and W. S. Stone: [1] Mutations and mutagenic agents in bacteria. Amer. Naturalist 84, 261–275 (1950).CrossRefGoogle Scholar
  151. Haas, F. L., E. Dudgeon, F. E. Clayton and W. S. Stone: [2] Frequency of chromosomal aberrations as related to rate of irradiation, temperature and gases. Genetics 37, 589–590 (1952).Google Scholar
  152. [3] Measurement and control of some direct and indirect effects of X-radiation. Genetics 39, 453–471 (1954).Google Scholar
  153. Harder, R.: Über Färb- und Musteränderungen bei Blüten. Naturwiss. 26, 713–722 (1938).CrossRefGoogle Scholar
  154. Harm, W., u. W. Stein: [1] Beeinflussung der UV-Inaktivierung von Coli-Bakterien durch Bebrütungstemperatur und Nährboden. Z. Naturforsch. 8b, 123–133 (1953).Google Scholar
  155. [2] Weitere Experimente zur Reaktivierung von ultraviolett- und peroxydinaktivierten Coli-Stämmen. Z. Naturforsch. 8b, 729–741 (1953).Google Scholar
  156. Harrington, N. J., and R. W. Koza: Effect of X-radiation on the desoxyribonucleic acid and on the size of grasshopper embryonic nuclei. Biol. Bull. 101, 138–150 (1951).CrossRefGoogle Scholar
  157. Hart, E. J.: Molecular product and free radical yields of ionizing radiations in aqueous solutions. Radiation Res. 1, 53–61 (1954).PubMedCrossRefGoogle Scholar
  158. Harte, C.: Mutationsauslösung durch Ultrakurzwellen. Chromosoma 3, 440–447 (1949).CrossRefGoogle Scholar
  159. Heidenthal, G., L. B. Clark and J. W. Gowen: Comparative effectiveness of X-rays of 124 KV and 50 MeV on Habrobracon eggs. Radiation Res. 1, 499 (1954).Google Scholar
  160. Heinmets, F.: Reactivation of ultraviolet inactivated Escherichia coli by pyruvate. J. Bacter. 66, 455–457 (1953).Google Scholar
  161. Heinmets, F., W. W. Taylor and I.I. Lehman: [1] The use of metabolites in the restoration of the vitability of heat and chemically inactivated Escherichia coli. J. Bacter. 67, 5–12 (1954).Google Scholar
  162. Heinmets, F., J. J. Lehmann, W. W. Taylor and R. H. Kathan: [2] The study of factors with influence metabolic reactivation of the ultraviolet inactivated Escherichia coli. J. Bacter. 67, 511–522 (1954).Google Scholar
  163. Herve, A., Z. M. Bacq und H. Betz: Schutzwirkung von Natriumcyanid und -azid gegen letale Röntgenbestrahlung. J. chim. physique etc. 48, 256–257 (1951).Google Scholar
  164. Hevesy, G. V.: [1] Ionizing radiation and cellular metabolism. Symposium on Radiobiology, ed. by J. J. Nickson, S. 189–213. New York: John Wiley & Sons Inc. 1952.Google Scholar
  165. [2] Die Anwendung der radioaktiven Indikatoren in der Radiobiologie. Strahlenther. 93, 325–348 (1954).Google Scholar
  166. Hill, R. F., and H. H. Rossi: [1] Abscence of photoreactivation in Tl bacteriophage irradiated with ultraviolet in the dry state. Science (Lancaster, Pa.) 116, 424–425 (1952).Google Scholar
  167. [2] The ultraviolet sensitivity and photoreactivability of T1 bacteriophage. I. Effect of irradiation conditions upon survival curves. Radiation Res. 1, 282–293 (1954).Google Scholar
  168. [3] The ultraviolet sensitivity and photoreactivability of T1 bacteriophage. II. Interpretation of the survival curves. Radiation Res. 1, 358–368 (1954).Google Scholar
  169. Hirshfield, H., and A. C. Giese: Ultraviolet radiation effects on growth processes of Blepharisma undulans. Exper. Cell Res. 4, 283–294 (1953).CrossRefGoogle Scholar
  170. Hollaender, A.: [1] Physical and chemical factors modifying the sensitivity of cells to high energy and ultraviolet radiation. U.S.A. E. C. Document No ORNL 844, 1950.Google Scholar
  171. [2] Radiation Biology, vol. I, High energy radiation. Part 1 u. part 2. New York: McGraw Hill Book Comp. 1954.Google Scholar
  172. [3] Radiation Biology Vol. II. Ultraviolet and related radiations. New York: McGraw Hill Book Comp. 1955.Google Scholar
  173. [4] Effect of long ultraviolet and short visible radiation (3500–4900 Å) on Escherichia coli. J. Bacter. 46, 531–541 (1943).Google Scholar
  174. Hollaender, A., and G. E. Stapleton: Fundamental aspects of radiation protection from a microbiological point of view. Physiologic. Rev. 33, 77–84 (1953).Google Scholar
  175. Holt, A. S., I. A. Brooks and W. A. Arnold: Some effects of 2537 Å on green algae and chloroplast preparations. J. Gen. Physiol. 34, 627–645 (1951).PubMedCrossRefGoogle Scholar
  176. Hotchkiss, R. D.: The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J. of Biol. Chem. 175, 315–332 (1948).Google Scholar
  177. Houtermans, Th.: [1] Über den Einfluß des Wachstumszustandes eines Bacteriums auf seine Strahlenempfindlichkeit. Z. Naturforsch. 8b, 767–771 (1953).Google Scholar
  178. [2] Über den Einfluß der Temperatur auf biologische Strahlenwirkungen. Z. Naturforsch. 9b, 600–602 (1954).Google Scholar
  179. [3] Über den Verlauf der Inaktivierungskurven für E. coli bei sehr kleinen Bestrahlungsdosen. Strahlenther. 9 3, 130–137 (1954).Google Scholar
  180. Howard, A.: Report of “Symposium on mode of action of ionizing radiations“. Nucleonics 7, 26–30 (1950).PubMedGoogle Scholar
  181. Howard, A., and S. R. Pelc: Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Lond.) 6 Suppl. 261 (1953).Google Scholar
  182. Hutchinson, F., and E. R. Mosburg jr.: Deuteron inactivation of adsorbed monolayers of bovine serum albumin. Arch. of Biochem. a. Biophysics 51, 436 (1954).CrossRefGoogle Scholar
  183. Jacob, F.: Effets de la carence glucidique sur l’induction d’un Pseudomonas pyocyanea lysogène. Ann. Inst. Pasteur 82, 433–456 (1952).Google Scholar
  184. Jacob, F., A. M. Torriani and J. Monod: L’effet du rayonnement ultraviolet sur la biosynthèse de la ß-galactosidase et sur la multiplication du bacteriophage T2 chez Escherichia coli. C. r. Acad. Sci. (Paris) 233, 1230–1232 (1951).Google Scholar
  185. Johnson, F. H., E. A. Flagler and H. F. Baum: Relation of oxygen to photoreactivation of bacteria after ultraviolet radiation. Proc. Soc. Exper. Biol. a. Med. 74, 32–35 (1950).Google Scholar
  186. Jonas, H.: Some effects of radio frequency irradiations on small oil-bearing seeds. Physiol. Plantarum (Copenh.) 5, 41–51 (1952).CrossRefGoogle Scholar
  187. Kanazir, D., et M. Errera: Metabolism des acides nucléiques chez Escherichia coli B après irradiation ultraviolette. Biochim. et biophysica Acta (Amsterd.) 14, 62 (1954).CrossRefGoogle Scholar
  188. Kaplan, R.: [1] Photodynamische Auslösung von Mutationen in den Sporen von Pénicillium notatum. Planta (Berl.) 38, 1–11 (1950).CrossRefGoogle Scholar
  189. Kaplan, R. W.: [2] Auslösung von Phagenresistenzmutationen bei Bacterium coli durch Erythrosin mit und ohne Belichtung. Naturwiss. 37, 308 (1950).CrossRefGoogle Scholar
  190. [3] Genetische Wirkungen durch UV und Licht. Strahlenther. 86, 157–163 (1952).Google Scholar
  191. [4] Über Möglichkeiten der Mutationsauslösung in der Pflanzenzüchtung. Z. Pflanzenzucht. 32, 121–131 (1953).Google Scholar
  192. [5] Beeinflussung des durch Röntgenstrahlen induzierten mutativen Fleckenmosaiks. Strahlenther. 94, 106–118 (1954).Google Scholar
  193. Kaplan, S., E. de Rosenblum and V. Bryson: Adoptive enzyme formation in radiation sensitive and radiation resistant Escherichia coli following exposure to ultraviolet. J. Cellul. a. Comp. Physiol. 41, 153–162 (1953).CrossRefGoogle Scholar
  194. Kaudewitz, F.: Untersuchung des Einflusses von Meter- und Kilometerwellen auf die Generationsdauer einiger Protozoen. Z. Naturforsch. 9b, 145–148 (1954).Google Scholar
  195. Kelly, S. L., and H. B Jones: Effects of irradiation on nucleic acid formation. Proc. Soc. Exper. Biol. a. Med. 74, 493–497 (1950).Google Scholar
  196. Kelner, A.: [1] Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc. Nat. Acad. Sci. U.S.A. 35, 73–79 (1949).CrossRefGoogle Scholar
  197. [2] Action spectra for photoreactivation of ultravioletirradiated Escherichia coli and Streptomyces griseus. J. Gen. Physiol. 34, 835–852 (1951).Google Scholar
  198. [3] Experiments on photoreactivations with bacteria and other microorganisms. J. Cellul. a. Comp. Physiol. 39, Suppl. 1, 115–118 (1952).Google Scholar
  199. [4] Growth, respiration and nucleic acid synthesis in ultraviolet irradiated and in photoreactivated Escherichia coli. J. Bacter. 65, 252–262 (1953).Google Scholar
  200. Kiepenheuer, K. O., J. Brauer u. C. Harte: Über die Wirkung von Meterwellen auf das Teilungswachstum der Pflanzen. Naturwiss. 36, 27 (1949).CrossRefGoogle Scholar
  201. Kimball, R. F.: The influence of H2O2 on mutation production by X-rays in Paramaecium aurelia. Radiation Res. 1, 501 (1954).Google Scholar
  202. Kimball, R. F., and N. Gaither: [1] The influence of light upon the action of ultraviolet on Paramaecium aurelia. J. Cellul. a. Comp. Physiol. 37, 211–233 (1951).CrossRefGoogle Scholar
  203. [2] Role of externally produced hydrogen peroxide in damage to Paramaecium aurelia by X-rays. Proc. Soc. Exper. Biol. a. Med. 80, 525–529 (1952).Google Scholar
  204. Kirby-Smith, J. S., and D. S. Daniels: The relative effects of X-rays, gamma rays and beta rays on chromosomal breakage in Tradescantia. Genetics 38, 375–388 (1953).PubMedGoogle Scholar
  205. Kirby-Smith J. S., and C. P. Swanson: The effects of fast neutrons from a nuclear detonation on chromosome breakage in Tradescantia. Science (Lancaster, Pa.) 119, 42–45 (1954).Google Scholar
  206. Kleczkowski, J., and A. Kleczkowski: The behaviour of Rhizobium bacteriophages during and after exposure to ultraviolet radiation. J. Gen. Microbiol. 8, 135–144 (1953).PubMedGoogle Scholar
  207. Klein, G., and A. Forssberg: Studies in the effect of X-rays on the biochemistry and cellular composition of ascites tumors. I. Effect on growth, cell volumes, nucleic acid and nitrogen synthesis in the Ehrlich ascites tumor. Exper. Cell Res. 6, 211–220 (1954).CrossRefGoogle Scholar
  208. Knapp, E.: Entwicklungsphysiologische Untersuchungen an Fucaceen-Eiern. I. Planta (Berl.) 14, 731–751 (1931).CrossRefGoogle Scholar
  209. Köhler, H.: Untersuchungen über den Einfluß von Kurzwellen auf Keimfähigkeit und Wachstum von Pflanzen. Diss. Greifswald 1944.Google Scholar
  210. Konzak, C. F.: Differential sensitivity of soaked barley seeds to X-rays and thermal neutrons. Radiation Res. 1, 220 (1954).Google Scholar
  211. Koski, V. M., C. S. French and I. H. C. Smith: The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch. of Biochem. a. Biophysics 31, 1–17 (1951).CrossRefGoogle Scholar
  212. Lang, A.: [1] Entwicklungsphysiologie. Fortschr. Bot. 15, 400–475 (1952).Google Scholar
  213. [2] Entwicklungsphysiologie. Fortschr. Bot. 16, 342–376 (1954).Google Scholar
  214. Langendorff, H. u. M., u. K. Sommermeyer: Die Deutung des LD 50-Anstieges mit steigender spezifischer Ionisation und die Reaktivierung sowie Sensibilisierung durch Wärme bei E. choli. Naturwiss. 41, 189–190 (1954).CrossRefGoogle Scholar
  215. Langendorff, H., R. Koch u. H. Sauer: [1] Untersuchungen über einen biologischen Strahlenschutz. IV. Die Bedeutung Sulfhydrylgruppen tragender Verbindungen für den biologischen Strahlenschutz. Strahlenther. 93, 281–288 (1954).Google Scholar
  216. Langendorff, H., R. Koch u. U. Hagen: [2] Untersuchungen über einen biologischen Strahlenschutz. VIII. Mitt. Zur Spezifität des Zystein und verwandter Sulfhydrylkörper beim Strahlenschutz. Strahlenther. 95, 238–250 (1954).Google Scholar
  217. Laser, H.: The oxygen-effect in ionizing irradiation. Nature (Lond.) 174, 753 (1954).CrossRefGoogle Scholar
  218. Latarjet, R., and L. R. Caldas: Restoration induced by catalase in irradiated microorganisms. J. Gen. Physiol. 35, 455–470 (1952).PubMedCrossRefGoogle Scholar
  219. Latarjet, R., et B. Milétic: Actions des ultra-violets longs et des visibles courts (3400–5500 Å) sur les complexes bacterie bacteriophage. Ann. Inst. Pasteur 84, 205–217 (1953).Google Scholar
  220. Lavik, P. S., and G. W. Buckaloo: Nucleic acid synthesis in X-irradiated chick embryos. Radiation Res. 1, 221 (1954).Google Scholar
  221. Lea, D. E.: Action of radiation of living cells. Cambridge 1947.Google Scholar
  222. Lewis, G. N., and M. Calvin: Paramagnetism of the phosphorescent state. J. Amer. Chem. Soc. 67, 1232–1233 (1945).CrossRefGoogle Scholar
  223. Lewis, G. N., and M. Kasha: Phosphorescence and the triplet state. J. Amer. Chem. Soc. 66, 2100–2116 (1944).CrossRefGoogle Scholar
  224. Lewis, G. N., and D. L. Lipkin: Reversible photochemical processes in rigid media: The dissociation of organic molecules into radicals and ions. J. Amer. Chem. Soc. 64, 2801–2808 (1942).CrossRefGoogle Scholar
  225. Liechti, A., u. E. Feistmann: Über die Empfindlickkeit von Einzellern auf ultraviolettes ind sichtbares Licht. Strahlenther. 62, 393–405 (1938).Google Scholar
  226. Lindemann, J.: Die Röntgenschädigung von Escherichia coli bei 180 keV und 31 MeV. Experientia (Basel) 9, 22–23 (1953).CrossRefGoogle Scholar
  227. Liverman, I. L., and J. Bonner: Biochemistry of the photoperiodic response. The high intensity light reaction. Bot. Gaz. 115, 121–128 (1954).CrossRefGoogle Scholar
  228. Livingston, R.: [1] General statements about chemical reactions induced by ionizing radiation. Symposium on Radiobiology, ed. by J. J. Nickson, S. 56–69. New York 1952.Google Scholar
  229. [2] Photochemistry. In A. Hollaender, Radiation Biology, Bd. II, S. 1–40. New York: McGraw Hill Book Comp. 1955.Google Scholar
  230. Lüning, K. G.: Effect of oxygen on irradiated males and females of Drosophila. Hereditas (Lund) 40, 295–312 (1954).CrossRefGoogle Scholar
  231. Luria, S. E., and F. M. Exner: The inactivation of bacteriophages by X-rays influence of the medium. Proc. Nat. Acad. Sci. U.S.A. 27, 370–375 (1941).CrossRefGoogle Scholar
  232. Mandels, G. R.: The photoinactivation of enzymes by riboflavin. Plant Physiol. 25, 763–766 (1950).PubMedCrossRefGoogle Scholar
  233. Mandl, I., B. Levy and A. D. Mc Laren: The photochemistry of proteins. IX. J. Amer. Chem. Soc. 72, 1790–1792 (1950).CrossRefGoogle Scholar
  234. Maxwell, C. R., D. C. Peterson and N. E. Sharpless: The effect of ionizing radiation on amino acids. I. The effect of X-rays on aqueous solutions of glycine. Radiation Res. 1, 530–545 (1954).PubMedCrossRefGoogle Scholar
  235. Mc Laren, A. D.: Photochemistry of enzymes, proteins and viruses. Adv. Enzymol. 9, 75–170 (1949).Google Scholar
  236. Mc Laren, A. D., P. Genitle, D. C. Kirk jr. and N. A. Levin: Photochemistry of proteins. XVII. Inactivation of enzyme3 with UV light and photolysis of the peptide bond. J. Polymer. Sci. 10, 333–344 (1953).CrossRefGoogle Scholar
  237. Mc Lean, A. D., and A. C. Giese: Absorption spectra of proteins and aminoacids after ultraviolet irradiation. J. of Biol. Chem. 187, 537–542 (1950).Google Scholar
  238. Mefferd jr., R. B., and L. L. Compbell jr.: Influence of temperature upon radiation sensitivity of thermophilic and mesophilic bacteria. Proc. Soc. Exper. Biol. a. Med. 79, 12–16 (1952).Google Scholar
  239. Mefferd jr., R. B., and T. S. Matney: Protection of Escherichia coli against ultraviolet radiation by pretreatment with carbon monoxide. Science (Lancaster, Pa.) 115, 116–117 (1952).Google Scholar
  240. Mellors, R. C., R. E. Berger and H. G. Streim: Ultraviolet microscopy and microspectroscopy of resting and dividing cells: studies with a reflecting microscope. Science (Lancaster, Pa.) 111, 627–632 (1950).Google Scholar
  241. Metzner, P.: Zur Kenntnis der photodynamischen Erscheinung. III. Mitteilung: Uber die Bindung der wirksamen Farbstoffe in der Zelle. Biochem. Z. 148, 498–523 (1924).Google Scholar
  242. Meyer, A. E., u. E. O. Seitz: Ultraviolette Strahlen. Berlin 1942.Google Scholar
  243. Michaelis, L.: Fundamentals of oxidation and respiration. Amer. Scientist 34, 573–596 (1946).Google Scholar
  244. Milétic, B., et P. Morenne: Nouvelles recherches sur la restauration induite par la catalase chez des Bact. irradiées. Ann. Inst. Pasteur 83, 515–527 (1952).Google Scholar
  245. Minder, W., u. D. Schön: Vergleichende Untersuchungen über den Schutzeffekt bei Bestrahlung definierter Systeme. Strahlenther. 91, 126–134 (1953).Google Scholar
  246. Möhler, H.: Das Absorptionsspektrum der chemischen Bindung. Jena 1943.Google Scholar
  247. Montfort, C.: Lichtlähmung und Lichtbleichung bei Wasserpflanzen. Planta (Berl.) 32, 121–149 (1941).CrossRefGoogle Scholar
  248. Montfort, C., I. Felgner u. L. Müller: Zeitphasen im Jahreslauf des lichtökologischen Chlorophyllspiegels beim photostabilen Laubblatt. Beitr. Biol. Pflanz. 29, 106–128 (1952).Google Scholar
  249. Moos, W. S.: How biological effectiveness varies with X-ray energy. Nucleonics 12, 46–49 (1954).Google Scholar
  250. Morowitz, H. J.: The action of ultraviolet light and ionizing radiation on spores of Bacillus subtilis. I. The ultraviolet lethal action, mutation action and absorption spectra. Arch. of Biochem. a. Biophysics 47, 325–337 (1953).CrossRefGoogle Scholar
  251. Mosebach, G.: [1] Über den Einfluß des Lichtes auf die Polarisierung des befruchteten Eies von Cystosira barbata Ag. Ber. dtsch. bot. Ges. 56, 210–225 (1938).Google Scholar
  252. [2] Über die Polarisierung der Equisetum-Spore durch das Licht. Planta (Berl.) 33, 340–387 (1943).Google Scholar
  253. Muller, H. J.: The nature of the genetic effects produced by radiation. The manner of production of mutations by radiation. In A. Hollaender, Radiation biology Bd. I, Teil 1, S. 351–473 u. 475–626. New York u. London 1954.Google Scholar
  254. Myers, J., and G. O. Burr: Studies on photosynthesis. Some effects of light of high intensity in Chlorella. J. Gen. Physiol. 24, 45–67 (1940).PubMedCrossRefGoogle Scholar
  255. Nakao, Y.: Action of irradiated cytoplasm on untreated chromosomes of the silkworm. Nature (Lond.) 172, 625–626 (1953).CrossRefGoogle Scholar
  256. Nickson, J. L.: Symposium on radiobiology. The basic aspect of radiation effects on living systems. New York: John Wiley & Sons, Inc. 1952.Google Scholar
  257. Noack, K.: Photochemische Wirkungen des Chlorophylls und ihre Bedeutung für die Kohlensäureassimilation. Z. Bot. 17, 481–548 (1925).Google Scholar
  258. Noethling, W., u. H. Stubbe: Neuere botanische Untersuchungen über die Beziehung von Genmutabilität zur Quantität und Qualität kurzwelliger Strahlung. Strahlenther. 61, 622–630 (1938).Google Scholar
  259. Norman, A.: [1] Inactivation of Neurospora conidia by ultraviolet radiation. Exper. Cell. Res. 2, 454–473 (1951).CrossRefGoogle Scholar
  260. [2] Production of phenocopies in aerobacter aerogenes by ultraviolet radiation. J. Bacter. 65, 151–156 (1953).Google Scholar
  261. Novick, A., and L. Szilard: Experiments on light-reaction of ultraviolet inactivated bacteria. Proc. Nat. Acad. Sci. U.S.A. 35, 591–600 (1949).CrossRefGoogle Scholar
  262. Nybom, N., A. Gustafsson and L. Ehrenberg: On the injurious action of ionizing radiations in plants. Bot. Not. (Lund) 1952, 343–365.Google Scholar
  263. Ord, M. G., and L. A. Stocken: Biochemical aspects of the radiation syndrome. Physiologic. Rev. 33, 356–386 (1953).Google Scholar
  264. Oster, G., and A. D. Mc Laren: The ultraviolet light and photosensitived inactivation of tobacco mozaic virus. J. Gen. Physiol. 33, 215–228 (1949/50).CrossRefGoogle Scholar
  265. Patrick, W. N., and M. Burton: Polymer production in radiolysis of benzene. J. Amer. Chem. Soc. 76, 2626–2629 (1954).CrossRefGoogle Scholar
  266. Patt, H. M.: Protective mechanism in ionizing radiation injury. Physiologic. Rev. 33, 35–76 (1953).Google Scholar
  267. Patt, H. M., and A. M. Brues: The pathological physiology of radiation injury in the mammal. I. Physical and biological factors in radiation action. In A. Hollaender, Radiation biology, Bd. I, Teil 2, S. 919–958. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  268. Patt, H. M., J. W. Clark and H. H. Vogel jr.: Comparative protective effect of cysteine against fast neutron and γ-irradiation in mice. Proc. Soc. Exper. Biol. a. Med. 84, 189–193 (1953).Google Scholar
  269. Peters, K.: [1] Stoffwechselbeziehungen zwischen bestrahltem und unbestrahltem Gewebe in ihrem Einfluß auf die Mitosenhäufigkeit in vitro. Z. Zellforsch. 39, 203–211 (1953).PubMedCrossRefGoogle Scholar
  270. [2] Über die Bedeutung des Mediums für die Wirkung sekundärer Stoffwechselprodukte auf die Mitosehäufigkeit in halbbestrahlten Gewebekulturen. Z. Zellforsch. 40, 510–518 (1954).Google Scholar
  271. Piringer, A. A. and P. H. Heinze: Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 29, 467–472 (1954).PubMedCrossRefGoogle Scholar
  272. Pirschle, K.: Weitere Beobachtungen über den Einfluß von langwelliger und mittelwelliger UV-Strahlung auf höhere Pflanzen. Biol. Zbl. 61, 452–473 (1941).Google Scholar
  273. Pirson, A., u. F.Alberts: Über die Assimilation von Helodeablättchen nach Vitalfärbung mit Vitamin B. Protoplasma 35, 131–136 (1940).CrossRefGoogle Scholar
  274. Platzmann, R. L.: On the primary processes in radiation chemistry and biology. Symp. on radiobiol., edited by J. J. Nickson, S. 97–115. New York: John Wiley & Sons, Inc. 1952.Google Scholar
  275. Plaen, P. de: Tendances actuelles dans l’interprétation de la radiolésion cellulaire. J. belge Radiol. 35, 113–129 (1953).Google Scholar
  276. Pollard, E.: Primary ionisation as a test of molecular organisation. Adv. Biol. a. Med. Physics 3, 153–190 (1953).Google Scholar
  277. Pollard, E., and J. Setlow: Effect of ionizing radiation on the serological affinity of Trbacteriophage. Arch. of Biochem. a. Biophysics 50, 376–382 (1954).CrossRefGoogle Scholar
  278. Porter, J. W., and H. J. Knauss: Inhibition of growth of chlorella pyrenoidosa by ß-rays emitting radioisotopes. Plant Physiol. 29, 60–63 (1954).PubMedCrossRefGoogle Scholar
  279. Powell, W. F., and E. Pollard: Radiation sensitivity of enzymes in intact cells. Bull. Amer. Phys. Soc. 28, 70 (1953).Google Scholar
  280. Pratt, R., J. Dufrenoy and G. Gardner: Effect of ultraviolet irradiation on Escherichia coli and its reversal. Pharmaceut. Assoc. 39, 496–500 (1950).CrossRefGoogle Scholar
  281. Pringsheim, P.: Fluorescence and phosphorescence. New York: Intersci. Publ. 1949.Google Scholar
  282. Putnam, F. W.: Bacteriophages: Nature and reproduction. Adv. Protein Chem. 8, 175–284 (1953).PubMedCrossRefGoogle Scholar
  283. Rabinowitch, E.: [1] Photosynthesis and related Processes. I. New York 1945.Google Scholar
  284. [2] Photosynthesis and related processes. II. Teil 1. New York 1951.Google Scholar
  285. Rajewsky, B.: [1] Biophysikalische Grundlagen der Ultrakurzwellenbehandlung im lebenden Gewebe. In Ergebnisse der biophysikalischen Forschung. Leipzig: Georg Thieme 1938.Google Scholar
  286. [2] The limits of the target theory of the biological action of radiation. Brit. J. Radiol. 25, 550–552 (1952).Google Scholar
  287. [3] Strahlendosis und Strahlenwirkung. Stuttgart: Georg Thieme 1954.Google Scholar
  288. Ramshorn, K.: [1] Einige Beobachtungen über den Einfluß von Hochfrequenzfeldern auf die pflanzliche Entwicklung/Ber. dtsch. bot. Ges. 64, 24–25 (1952).Google Scholar
  289. [2] Über den Einfluß von Hochfrequenzfeldern auf den pflanzlichen Organismus. I. Die Wirkung auf die Entwicklung von Tomatenpflanzen bei Frequenzen von 75 und 150 Mhz. Die Kulturpflanze 1, 79–110 (1953).Google Scholar
  290. Rapkine, S., D. Shugar and L. Siminowitch: The activation by heat of triose phosphate dehydrogenase. Arch. of Biochem. 26, 33–49 (1950).Google Scholar
  291. Rapport, D., and A. Canzanelli: The photochemical action of ultraviolet light on the absorption spectra of nucleic acid and related substances. Science (N. Y.) 112, 469–471 (1950).CrossRefGoogle Scholar
  292. Read, J.: [1] The effect of ionizing radiations on the broad bean root. Part X. The dependence of the X-ray sensitivity on dissolved oxygen. Brit. J. Radiol. 25, 89–99, 154–160 (1952).PubMedCrossRefGoogle Scholar
  293. [2] Mode of addition of X-ray doses given with different oxygen concentrations. Brit. J. Radiol. 25, 336–338 (1952).Google Scholar
  294. Bedford, E. L., and J. Myers: Some effects of ultraviolet radiations on the metabolism of Chlorella. J. Cellul. a. Comp. Physiol. 38, 217–243 (1951).CrossRefGoogle Scholar
  295. Reinert, J.: Über die Wirkung von Riboflavin und Carotin beim Phototropismus von Avena-Koleoptilen und bei anderen pflanzlichen Lichtreizreaktionen. Z. Bot. 41, 103–121 (1953).Google Scholar
  296. Reinholz, E.: Beiträge zur Kenntnis der indirekten Strahlenwirkung. I. Röntgenbestrahlung biologischer Objekte in fester Phase. Strahlenther. 95, 131–147 (1954).Google Scholar
  297. Reiter, R.: Die Bedeutung extrem langwelliger elektromagnetischer Strahlungen in der Bioklimatologie. Strahlenther. 89, 628–633 (1953).Google Scholar
  298. Rice, E. W.: The action of ultraviolet light on the pentose moiety of nucleic acids and related compounds. Science (Lancaster, Pa.) 115, 92–93 (1952).Google Scholar
  299. Rottgardt, K. H. J.: Versuch zu einer Erklärung der Photoreaktivierung von Bacteriophagen. Naturwiss. 40, 169 (1953).CrossRefGoogle Scholar
  300. Sagromsky, H.: Lichtinduzierte Ringbildung bei Pilzen. II. Flora (Jena) 139, 560–564 (1952).Google Scholar
  301. Sallmann, L. V.: The effects of radiation on the cytology of the eye. J. Cellul. a. Comp. Physiol. 39, Suppl. 2, 217–233 (1952).CrossRefGoogle Scholar
  302. Samuel, A. H., and J. L. Magee: Theory of radiation chemistry. II. Track effects in radiolysis of water. J. Chem. Phys. 21, 1080–1087 (1953).CrossRefGoogle Scholar
  303. Sarachek, A.: Ultraviolett inactivation of Saccharomyces during the budding cycle. Exper. Cell Res. 6, 45–55 (1954).CrossRefGoogle Scholar
  304. Sarachek, A., and W. H. Lucke: Ultraviolet inactivation of polyploid Saccharomyces. Arch. of Biochem. a. Biophysics 44, 271–279 (1953).CrossRefGoogle Scholar
  305. Sauter, E., u. W. Schwartz: Untersuchungen über die Wirkung ultrakurzer Wellen auf die lebende Bakterienzelle. Arch. Mikrobiol. 10, 189–225 (1939).CrossRefGoogle Scholar
  306. Schenck, G. O.: [1] Über den photochemischen Primärakt und die anschließende erste Dunkelreaktion der Photosynthese. Naturwiss. 40, 205–212, 229–238 (1953).CrossRefGoogle Scholar
  307. [2] Reaction phototropisomerer Radikale in Natur und Technik. Z. Elektrochem. 56, 855–868 (1952).Google Scholar
  308. Scheraga, H. A., and L. F. Nims: The action of X-rays on fibrinogen solutions. Arch. of Biochem. a. Biophysics 36, 336–344 (1952).CrossRefGoogle Scholar
  309. Scholes, G., and J. Weiss: [1] Chemical action of X-rays on nucleic acids and related substances in aqueous systems. 1. Degradation of nucleic acids and nucleotides by X-rays and by free radicals produced chemically. Biochemie. J. 53, 567–578 (1953).Google Scholar
  310. [2] Chemical action of X-rays on nucleic acids and related substances in aqueous systems. 2. The mechanism of the action of X-rays on nucleic acids in aqueous systems. Biochemie. J. 56, 65–72 (1954).Google Scholar
  311. Schreiber, H.: Die Wellenlängenabhängigkeit des lichtbiologischen Effektes. Strahlenther. 77, 243–258 (1948).Google Scholar
  312. Schröder, H.: Untersuchungen über die Beeinflussung des Blütenfarbmusters von Petunia hybrida grandiflora hört. Jb. Bot. 79, 714–752 (1934).Google Scholar
  313. Serres, F. J. de, and N. H. Giles: The effect of radiation dose fractionation on chromosome aberration frequencies in Tradescantia microspores. I. Studies with X-rays. Genetics 38, 407–415 (1953).PubMedGoogle Scholar
  314. Setlow, R., and B. Doyle: [1] The effect of temperature on the direct action of ionizing radiation on catalase. Arch. of Biochem. a. Biophysics 46, 46–52 (1953).CrossRefGoogle Scholar
  315. [2] The effect of temperature and ultraviolet radiation on dry catalase. Bull. Amer. Phys. Soc. 28, 70 (1953).Google Scholar
  316. [3] The combined effect of temperature and ultraviolet radiation on dry catalase. Arch. of Biochem. a. Biophysics 46, 31–38 (1953).Google Scholar
  317. [4] The effect of temperature on the ultraviolet light inactivation of trypsin. Arch. of Biochem. a Biophysics 48, 441–447 (1954).Google Scholar
  318. Sherman, F. G., and H. B. Chase: Effects of ionizing radiations on enzyme activities of yeast cells. II. Influence of dilution on X-ray induced inhibition of anaerobic CO2 production and colony formation. J. Cellul. a. Comp. Physiol. 34, 207–219 (1949).CrossRefGoogle Scholar
  319. Shugar, D.: [1] Ultra-violet irradiation of triosephosphate dehydrogenase. Biochim. et Biophysica Acta 6, 548–561 (1951).CrossRefGoogle Scholar
  320. [2] Photoreactivation in the near ultraviolett of d-Glyceraldehyde-3-phosphatedehydrogenase. Experientia (Basel) 7, 26–28 (1951).Google Scholar
  321. [3] The measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. Biochim. et Biophysica Acta 8, 302–309 (1952).Google Scholar
  322. Siminovitch, L. et S. Rapkine: Modifications biochimiques au cours de développement des bacteriophages chez une bactérie lysogène. C. r. Acad Sci (Paris) 232, 1603–1605 (1951).Google Scholar
  323. Simonis, W.: Physikalisch-chemische Grundlagen der Lebensprozesse (Strahlenbiologie). Fortschr. Bot. 14, (1953 ff.).Google Scholar
  324. Sinsheimer, R. L.: [1] The photochemistry of uridylic acid. Radiation Res. 1, 505–513 (1954).PubMedCrossRefGoogle Scholar
  325. [2] Ultraviolet absorption spectra. In A. Hollaender, Radiation biology, Bd. II, S. 165–201. New York: McGraw Hill Book Comp. 1955.Google Scholar
  326. Six, E.: Zur Treffertheorie der indirekten Strahlenwirkung. Z. Naturforsch. 9b, 265–273 (1954).Google Scholar
  327. Skinner, H. H., and C. J. Bradish: Exposure to light as a source of error in the estimation of the infectivity of virus suspensions. J. Gen. Microbiol. 10, 377–397 (1954).PubMedGoogle Scholar
  328. Smith, C. L.: The inactivation of monomolekular films of protein and its relation to the lifetime of active radicals formed in water by X-radiations. Arch. of Biochem. a. Biophysics 50, 322–336 (1954).CrossRefGoogle Scholar
  329. Sommermeyer, K.: Quantenphysik der Strahlenwirkung in Biologie und Medizin. Leipzig: Grest & Portig K.-G. 1952.Google Scholar
  330. Sparrow, A. H., and B. A. Rubin: Effects of radiations on biological systems. In: Survey of Biological Progress, Bd. II, S. 1–52. New York: Acad. Press. Inc. Publ. 1952.Google Scholar
  331. Sparrow, A. H., M. J. Moses and R. Steele: A cytological and cytochemical approach to an understanding of radiation damage in dividing cells. Brit. J. Radiol. 25, 182–189 (1952).PubMedCrossRefGoogle Scholar
  332. Stålfelt, M. L.: The influence of light upon the viscosity of protoplasm. Ark. Bot. 33A, 1–17 (1947).Google Scholar
  333. Stapleton, G. E. and C. W. Edington: Temperature dependence of bacterial inactivation by X-rays. Radiation Res. 1, 229 (1954).Google Scholar
  334. Stapleton, G. E., and A. Hollaender: Mechanism of lethal and mutagenic action of ionizing radiations on Aspergillus terreus. II. Use of modifying agents and conditions. J. Cellul. a. Comp. Physiol. 39, 101–114 (1952).Google Scholar
  335. Stapleton, G. E., D. Bdllen and A. Hollaender: [1 ] The role of enzymatic oxygen removal in chemical protection against X-ray inactivation of bacteria. J. Bacter. 63, 805–812 (1952).Google Scholar
  336. [2] Recovery of X-irradiated bacteria at suboptimal incubation temperatures. J. Cellul. a. Comp. Physiol. 41, 345–357 (1953).Google Scholar
  337. Stein, W., u. W. Harm: [1] Wärmeaktivierung, „spontan“-inaktiver und UV-inaktivierter Colibakterien. Naturwiss. 39, 113 (1952).CrossRefGoogle Scholar
  338. [2] Wärmeaktivierung von Coli-Bakterien nach Inaktivierung durch UV-bestrahlten Bouülon-Agar. Naturwiss. 39, 383 (1952).Google Scholar
  339. [3] Modellvorstellungen zur UV-Inaktivierung von Colibakterien im Licht von Reaktivierungseffekten. Z. Naturforsch. 8b, 742–754 (1953).Google Scholar
  340. Stein, W., u. I. Meutzner: Reaktivierung von UV-inaktiviertem Bacterium coli durch Wärme. Naturwiss. 37, 167–168 (1950).CrossRefGoogle Scholar
  341. Stone, W. S., F. Haas, J. B. Clark and O. Wyss: The role of mutation and of selection in the frequency of mutants among microorganisms grown on irradiated substrate. Proc. nat. Acad. Sci. U.S.A. 34, 142–149 (1948).CrossRefGoogle Scholar
  342. Straub J.: Das Licht bei der Auslösung der Fruchtkörperbildung von Didymium eunigripes und die Übertragung der Lichtwirkung durch das tote Plasma. Naturwiss. 41, 219–220 (1954).CrossRefGoogle Scholar
  343. Swallow, A. J.: The radiation chemistry of ethanol and diphosphopyridinnucleotide and its bearing in dehydrogenase action. Biochemic. J. 54, 253–257 (1953).Google Scholar
  344. Swanson, C. P., and L. J. Stadler: The effect of ultraviolet radiation on the genes and chromosomes of higher organisms. In: A. Hollaender, Radiation biology, Bd. II, S. 249–284. New York: McGraw Hill Book Comp. 1955.Google Scholar
  345. Swart-Füchtbauer, H., u. A. Rippel-Baldes: Die bactericide Wirkung des Sonnenlichtes. Arch. Mikrobiol. 16, 358–362 (1951).CrossRefGoogle Scholar
  346. Swenson, P. A.: The action spectrum of the inhibition of galactozymase production by ultraviolet light. Proc. Nat. Acad. Sci. U.S.A. 36, 699–703 (1950).CrossRefGoogle Scholar
  347. Swenson, P. A., and A. C. Giese: Photoreactivation of galactocymase formation in yeast. J. Cellul. a. Comp. Physiol. 36, 369–380 (1950).CrossRefGoogle Scholar
  348. Tanada, T., and S. B. Hendricks: Photoreversal of ultraviolet effects in soybean leaves. Amer. J. Bot. 40, 634–637 (1953).CrossRefGoogle Scholar
  349. Tappeiner, H. V.: Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe). Erg. Physiol. 8, 698–741 (1909).CrossRefGoogle Scholar
  350. Tappeiner, H. V., u. A. Jodlbauer: Die sensibilisierende Wirkung fluoreszierender Substanzen. Leipzig: F. C. W. Vogel 1907.Google Scholar
  351. Thoday, J. M., and J. Read: Effect of oxygen on the frequency of chromosome aberrations produced by α-rays. Nature (Lond.) 163, 133 (1949).CrossRefGoogle Scholar
  352. Timoféeff-Ressovsky, N. W., u. K. G. Zimmer: Das Trefferprinzip in der Biologic Leipzig: S. Hirzel 1947.Google Scholar
  353. Tobias, C. A.: The dependence of some biological effects of radiation on the rate of energy loss. Symposium on Radiobiology, ed. by Nickson, S. 357–384. New York: John Wiley & Sons, Inc. 1952.Google Scholar
  354. Todd, G. W., and A. W. Galston: A porphyrin pigment from photosensitive non chlorophyllous plant tissues. Plant Physiol. 29, 311–318 (1954).PubMedCrossRefGoogle Scholar
  355. Tolbert, N. E., and R. H. Burris: Light motivation of the plant enzyme which oxidises glycolic acid. J. of Biol. Chem. 186, 791–804 (1950).Google Scholar
  356. Torrey, J. G.: Effects of light on elongation and branching in pea roots. Plant Physiol. 27, 591–602 (1952).PubMedCrossRefGoogle Scholar
  357. Trowell, O. A.: The effect of environmental factors on the radiosensitivity of lymph nodes cultured in vitro. Brit. J. Radiol. 26, 302–309 (1953).PubMedCrossRefGoogle Scholar
  358. Uber F. M.: Biophysical Research methods. New York: Intersci. Publ. 1950.CrossRefGoogle Scholar
  359. Virgin, H. J.: [1] The effect of light on the protoplasmatic viscosity. Physiol. Plantarum (Copenh.) 4, 255–357 (1951).CrossRefGoogle Scholar
  360. [2] Further studies of the action spectrum for light induced changes in the protoplasmic viscosity of Helodea densa. Physiol. Plantarum (Copenh.) 7, 343–353 (1954).Google Scholar
  361. Voerkel, H.: Untersuchungen über die Phototaxis der Chloroplasten. Planta (Berl.) 21, 156–205 (1934).CrossRefGoogle Scholar
  362. Wagner, R., C. H. Haddox, R. Fürst and W. S. Stone: The effect of irradiated medium, cyanide and peroxide on the mutation rate in Neurospora. Genetics 35, 237–248 (1950).PubMedGoogle Scholar
  363. Wahl, R. und R. Latarjet: Inactivation de bacteriophages par les radiations de grande longueurs d’onde (3,600–6,000 Å) Ann. Inst. Pasteur 73, 957–971 (1947).Google Scholar
  364. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. I und II. Biochem. Z. 100, 230–270 (1919); 103, 188–217 (1920).Google Scholar
  365. Warburg, O., and V. Schokken: A manometric actinometer for the visible spectrum. Arch. of Biochem. a. Biophysics 21, 363–369 (1949).Google Scholar
  366. Wassink, E. C, and J. A. Stolwijk: Effects of light narrow spectral regions on growth and development of plants. I und II. Proc. Kon. Ned. Akad. v. Wetensch., Sect. Sci (C) 55, 471–480, 481–488 (1952).Google Scholar
  367. Waters, W. A.: Chemistry of free radicals. Oxford 1948.Google Scholar
  368. Watson, J. D.: The properties of X-ray inactivated bacteriophage. II. Inactivation by indirect effects. J Bacter. 63, 473–485 (1952).Google Scholar
  369. Weber, F.: Plasmolyse-zeit und Lichtwirkung. Protoplasma 7, 256–258 (1929).CrossRefGoogle Scholar
  370. Weil, L., u. A. R. Buchert: Photooxydation of crystalline/Mactoglobuline in the presence of methylene blue. Arch. of Biochem. a. Biophysics 34, 1–15 (1951).CrossRefGoogle Scholar
  371. Weil, L., W. G. Gordon and A. R. Buchert: Photooxidation of amino acids in the presence of methylene blue. Arch. of Biochem. a. Biophysics 33, 90–109 (1951).CrossRefGoogle Scholar
  372. Weiss, J.: [1] Über das Auftreten eines metastabilen, aktiven Sauerstoffmoleküls bei sensibilisierten Photooxydationen. Naturwiss. 23, 610 (1935).CrossRefGoogle Scholar
  373. [2] Photochemical reactions of SH-Compounds in solutions. Nature (Lond.) 137, 71–72 (1936).Google Scholar
  374. [3] Photochemical oxydation-réduction processes in aqueous systems. Symposia Soc. Exper. Biol. 5, 141–151 (1951).Google Scholar
  375. [4] Possible biological significance of the action of ionizing radiations on nucleic acids. Nature (Lond.) 169, 460–461 (1952).Google Scholar
  376. Wels, P.: Grundlagen der biologischen Strahlenwirkung. Arch, exper. Path. u. Pharmakol. 208, 116–133 (1949).CrossRefGoogle Scholar
  377. Welsh, J. N. and M. H. Adams: Photodynamic inactivation of bacteriophage. J. Bacter. 68, 122–127 (1954).Google Scholar
  378. Werfft, R.: Über die Lebensdauer der Pollenkörner in der freien Atmosphäre. Biol. Zbl. 70, 354–367 (1951).Google Scholar
  379. Weymouth, P. P. and H. S. Kaplan: Effect of X-radiation on lymphoid tissue nucleic acids in C57 black mice. Cancer Res. 12, 307 (1952).Google Scholar
  380. Writaker, D. M.: Physical factors of growth. Growth, Suppl. 1940, 75–90.Google Scholar
  381. Whitehead, H. A.: The protection of bacteria against radiation effects. Science (Lancaster, Pa.) 116, 459–460 (1952).Google Scholar
  382. Windisch, F., W. Heumann, H. Kriegel u. A. Graffi: Untersuchungen an Hefezellen über die Abhängigkeit des photodynamischen Effektes vom molekularen Sauerstoff. Z. Naturforsch. 8b, 673–675 (1953).Google Scholar
  383. Wolff, S., and K. C. Atwood: Independent X-ray effects on chromosome breakage and reunion. Proc. Nat. Acad. Sci. U.S.A. 40, 187–192 (1954).CrossRefGoogle Scholar
  384. Wood, Th. H.: Influence of low temperature and phase states on X-ray sensitivity of yeast. Radiation Res. 1, 234 (1954).Google Scholar
  385. Wuhrmann-Meyer, K., u. W.: Untersuchungen über die Absorption ultravioletter Strahlen durch Cuticular- und Wachsschichten von Blättern. Planta (Berl.) 32, 43–50 (1941).CrossRefGoogle Scholar
  386. Wyckoff, R. M. G.: The killing of certein bacteria by X-rays. J. of Exper. Med. 52, 435 (1930).CrossRefGoogle Scholar
  387. Wyss, O., F. Haas, J. B. Clark and W. S. Stone: Some effects of ultraviolet irradiation on microorganisms. J. Cellul. Physiol. 35 Suppl. 1, 133–140 (1950).Google Scholar
  388. Yost jr., H. T., J. Cummings and A. F. Blakeslee: The effect of fast neutron radiation from a nuclear detonation on chromosome aberation in Datura. Proc. Nat. Acad. Sci. U.S.A. 40, 447–451 (1954).CrossRefGoogle Scholar
  389. Zelle, M. R., and A. Hollaender: Monochromatic ultraviolett action spectra and quantum yields for inactivation of T1 and T2 E. coli bacteriophages. J. Bacter. 68, 210–215 (1954).Google Scholar
  390. Ziegler, H.: Beeinflussung der Atmungsintensität pflanzlicher Gewebe durch eine Belichtung in fluoreszierenden Farbstofflösungen. Z. Naturforsch. 5b, 345–350 (1950).Google Scholar
  391. Zirkle, R. E.: [1] Speculations on cellular actions of radiations. Symposium on Radiobiology ed. by Nickson, S. 333–356. New York 1952.Google Scholar
  392. [2] The radiological importance of linear energy transfer. In A. Hollaender, Radiation biology, Bd. I, Teü 1, S. 315–350. New York u. London: McGraw Hill Book Comp. Inc. 1954.Google Scholar
  393. Zirkle, R. E., and W. Bloom: Irradiation of parts of individual cells, Science (Lancaster, Pa.) 117, 487–493 (1953).Google Scholar
  394. Zirkle, R. E., and C. A. Tobias: Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch. of Biochem. a. Biophysics 47, 282–306 (1953).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • W. Simonis

There are no affiliations available

Personalised recommendations