Advertisement

Abstract

Because water is commonly the most abundant compound found in living organisms, its necessity for life reactions is self evident, but its significance in these reactions should not be ignored. The mere presence of large amounts of water in an active cell confers on its protoplasm certain physical properties. Thus variations in the water content of protoplasm are reflected in changes in the physical environment in which metabolic reactions occur. For example a decrease in hydration results in an increase in protoplasmic viscosity, an increase in osmotic pressure, and slower metabolism, until if dehydration proceeds too far irreversible changes result and death ensues. Active protoplasm seldom has a moisture content less than about 90 per cent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abele, K.: Über die Volumenabnahme des Zellkernes in der Plasmolyse und über das Zustandekommen der Kernplasmarelation. Protoplasma (Wien) 40, 324–327 (1951).CrossRefGoogle Scholar
  2. Ackley, W. B.: Seasonal and diurnal changes in the water contents and water deficits of Bartlett Pear Leaves. Plant Physiol. 29, 445–447 (1954).PubMedCrossRefGoogle Scholar
  3. Allsopp, A., and P. Misra: The constitution of the cambium, the new wood and the mature sapwood of the common ash, the common elm and the Scotch pine. Biochemie. J. 34, 1078–1084 (1940).Google Scholar
  4. Anderson, D. B., and T. Kerr: A note on the growth and behavior of cotton bolls. Plant Physiol. 18, 261–269 (1943).PubMedCrossRefGoogle Scholar
  5. Aronoff, S.: Photochemical reduction by chloroplast grana. Plant Physiol. 21, 393–409 (1946).PubMedCrossRefGoogle Scholar
  6. Badly, I. W.: Cell wall structure of higher plants. Industr. Engin. Chem. 30, 40–47 (1938).CrossRefGoogle Scholar
  7. Bangham, D. H., and F. J. Lewis: Wettability of the cellulose walls of mesophyll in the leaf. Nature (Lond.) 139, 1107–1108 (1937).CrossRefGoogle Scholar
  8. Bensley, R. R.: Chemical structure of cytoplasm. Science (Lancaster, Pa.) 96, 389–393 (1942).Google Scholar
  9. Bogen, H. J.: Über Kappenplasmolyse und Vakuolenkontraktion. I. Die Wirkung von LiCl und Neutralrot und ihre Abhängigkeit von der Konzentration und dem osmotischen Wert in der Außenlösung. Planta (Berl.) 39, 1–35 (1951).CrossRefGoogle Scholar
  10. Untersuchungen über Hitzetod und Hitzeresistenz pflanzlicher Protoplaste. Planta (Berl.) 36, 298–340 (1948).Google Scholar
  11. Beiträge zur Physiologie der nichtosmotischen Wasseraufnahme. Planta (Berl.) 42, 104–155 (1953).Google Scholar
  12. Bonner, J.: Plant Biochemistry. New York: Academic Press Inc. 1950.Google Scholar
  13. Bonner, J., R. S. Bandurski and A. Millerd: Linkage of respiration to auxin induced water uptake. Physiol. Plantarum (Copenh.) 6, 511–522 (1953).CrossRefGoogle Scholar
  14. Bull, H. B.: Physical biochemistry. New York: John Wiley a. Sons, Inc. 1951.Google Scholar
  15. Burström, H.: Studies on growth and metabolism of roots. IX. Cell elongation and water absorption. Physiol. Plantarum (Copenh.) 6, 262–276 (1953).CrossRefGoogle Scholar
  16. Butler, G. W.: Ion uptake by young wheat plants. I. Time course of absorption of potassium and chloride ions. Physiol. Plantarum (Copenh.) 6, 594–616 (1953).CrossRefGoogle Scholar
  17. Buvat, R.: Morphological changes in chondriosomes. Endeavour 12, 33–37 (1953).Google Scholar
  18. Callan, H. G.: A general account of experimental work on amphibian oocyte nuclei. Symposia Soc. Exper, Biol. 6, 242–255 (1952).Google Scholar
  19. Chambers, R.: Electrolytic solutions compatible with the maintenance of protoplasmic structures. Biol. Symp. 10, 91–109 (1943).Google Scholar
  20. Chatfield, C., and G. Adams: Proximate composition of American food materials. U. S. Dept. Agric. Circ. 549, 1–91 (1940).Google Scholar
  21. Cholnoky, B. J.: Beobachtungen über die Wirkung der Kalilauge auf das Protoplasma. Protoplasma (Wien) 41, 57–68 (1952).CrossRefGoogle Scholar
  22. Chrelashvili, M. N.: The influence of water content and carbohydrate accumulation on the energy of photosynthesis and respiration. Trudy Bot. Inst. Acad. Sci. USSR., Ser. IV. (Exper. Bot.) 5, 101–137, engl. sum. (1941).Google Scholar
  23. Cormack, R. G. H.: The development of root hairs in angiosperms. Bot. Review 15, 583–612 (1949).CrossRefGoogle Scholar
  24. Crafts, A. S.: Movement of organic materials in plants. Plant Physiol. 6, 1–42 (1931).PubMedCrossRefGoogle Scholar
  25. Crafts, A. S., H. B. Currier and C. R. Stocking: Water in the physiology of the plant. Waltham, Mass.: Chronica Botanica Co. 1949.Google Scholar
  26. Ekdahl, I.: Studies on the growth and the osmotic conditions of root hairs. Symbolae bot. Upsaliensis 11 (6), 1–83 (1953).Google Scholar
  27. Farrant, J. L., R. N. Robertson and M. J. Wilkins: The mitochondrial membrane. Nature (Lond.) 171, 401–402 (1953).CrossRefGoogle Scholar
  28. Frey-Wyssling, A.: Der Aufbau der pflanzlichen Zellwände. Protoplasma (Berl.) 25, 261–300 (1936).CrossRefGoogle Scholar
  29. Physiology of cell wall growth. Ann. Rev. Plant Physiol. 1, 169–182 (1950).Google Scholar
  30. Submicroscopic morphology of protoplasm. New York: Elsevier Puhl. Co. 1953.Google Scholar
  31. Frey-Wyssling, A., u. E. Häusermann: Über die Auskleidung der Mesophyllinterzellularen. Ber. Schweiz, bot. Ges. 51, 430 (1941).Google Scholar
  32. Frey-Wyssling, A., u. K. Mühlethaler: Über den Feinbau der Zell wand von Wurzelhaaren. Mikroskopie (Wien) 4, 257–266 (1949).Google Scholar
  33. Bau und Funktion der Wurzelhaare. Schweiz, landwirt. Mh. 28, 212–219 (1950).Google Scholar
  34. Galston, A. W.: The isolation, agglutination and nitrogen analysis of intact oat chloroplasts. Amer. J. Bot. 30, 331–334 (1943).CrossRefGoogle Scholar
  35. Gibbs, R. D.: Studies of wood. II. The water content of certain Canadian trees, and changes in the water-gas system during seasoning and flotation. Canad. J. Res. 12, 727–760 (1935).CrossRefGoogle Scholar
  36. Golovina, A. S.: The effect of drought on the biochemical processes of plants. Voronegh. Gosundarst. Univ. Nanch. Roboty Studentov. 1939, 51–58.Google Scholar
  37. Gner. A., and W. A. Gner Outlines of biochemistry. New York: John Wiley a. Sons, Inc. 1949.Google Scholar
  38. Gick.: The* chloroplasts: their structure, composition, and development. In: Fckd Loomis (Editors) Photosynthesis in Plants. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  39. Green, D. E.: The cyclophorase complex of enzymes. Biol. Rev. 26, 410–455 (1951).CrossRefGoogle Scholar
  40. Greenfield, S. S.: Inhibitory effects of inorganic compounds on photosynthesis in Chlorella. Amer. J. Bot. 29, 121–131 (1942).CrossRefGoogle Scholar
  41. Gutlliermond, A.: The cytoplasm of the plant cell. Waltham, Mass.: Chronica Botanica Co. 1941.Google Scholar
  42. Häusermann, E.: The amount of wetting of mesophyllic intercellular spaces. Ber. Schweiz, bot. Ges. 54, 544–589 (1944).Google Scholar
  43. Hawkins, R. S.: Variations of water and dry matter in the leaves of Pima and Acala cotton. Arizona Stat. Tech. Bull. 17, 417–444 (1927).Google Scholar
  44. Hermans, P. H., and A. Weidinger: The hydrates of cellulose. J. Colloid Sci. 1, 185–193 (1946).CrossRefGoogle Scholar
  45. Höfler, K.: Zur Kenntnis der Plasmahautschichten. Ber. dtsch. bot. Ges. 65, 391–399 (1952).Google Scholar
  46. Hoerr, N. L.: Methods of isolation of morphological constituents of the liver cell. Biol. Symp. 10, 185–232 (1943).Google Scholar
  47. Houwink, A. L., and P. A. Roelofsen: Fibrillar architecture of growing plant cell walls. Acta bot. neerl. 3, 385–395 (1954).Google Scholar
  48. Huber, B.: Wasserumsatz und Stoffbewegungen. Fortschr. Bot. 7, 197–207 (1937).Google Scholar
  49. Huckenpahler, B. J.: Amount and distribution of moisture in a living shortleaf pine. J. Forestry 34, 399–401 (1936).Google Scholar
  50. Kenda, G., u. F. Weber: Rasche Vakuolen-Kontraction in OennJÄe-Blütenzelle. Protoplasma (Wien) 41, 458–466 (1952).CrossRefGoogle Scholar
  51. Kerr, T.: Growth and structure of the primary wall. In: F. Skoog (Editor), Plant Growth Substances. Madison, Wisconsin: Univ. of Wisconsin Press 1951.Google Scholar
  52. Kisch, R.: Die Bedeutung der Wasserversorgung für den Ablauf der Meiosis. Jb. wiss. Bot. 85, 450–484 (1937).Google Scholar
  53. Kramer, P. J., and H. H. Wiebe: Longitudinal gradients of P32 absorption in roots. Plant Physiol. 27, 661–674 (1952).PubMedCrossRefGoogle Scholar
  54. Laties, G. G.: The physical environment and oxidative and phosphorylative capacities of the higher plant mitochondria. Plant Physiol. 28, 557–575 (1953).PubMedCrossRefGoogle Scholar
  55. The osmotic inactivation in situ of plant mitochondrial enzymes. J. of Exper. Bot. 5, 49–70 (1954).Google Scholar
  56. Lepeschkin, W. W.: Über die Struktur und den molekularen Bau der lebenden Materie. Protoplasma (Wien) 39, 222–243 (1950).CrossRefGoogle Scholar
  57. Levitt, J.: Frost, drought, and heat resistance. Ann. Rev. Plant Physiol. 2, 245–268 (1951).CrossRefGoogle Scholar
  58. Lewis, F. J.: Physical conditions of the surface of the mesophyll cell walls of the leaf. Nature (Lond.) 156, 407–490 (1945).CrossRefGoogle Scholar
  59. Water movements in leaves. Discuss. Faraday Soc. 3, 159–162 (1948).Google Scholar
  60. Leyon, H.: The structure of chloroplasts. IV. The development and structure of the Aspidistra chloroplast. Exper. Cell Res. 7, 265–273 (1954).CrossRefGoogle Scholar
  61. Lloyd, F. E.: Leaf-water, and stomatal movement in Gossypium and a method of direct visual observation of stomata in situ. Bull. Torrey Bot, Club 40, 1–14 (1913).CrossRefGoogle Scholar
  62. Mac Dougal, D. T.: Hydration and growth. Carnegie Instn. Washington Publ. No 297, 1920.Google Scholar
  63. Mark, H.: Cellulose: physical evidence regarding its constitution. In: L. E. Wise, Wood Chemistry, p. 103–136. New York: Reinhold 1944.Google Scholar
  64. Maximov, N. A.: The influence of drought on the physiological processes in plants, p. 299–309. Collection of papers on plant physiology in memory of K. A. Timiryazev. Acad. Sci. USSR, Inst. Pl. Physiol, in the name of K. A. Timiryazev 1941.Google Scholar
  65. Mc Clendon, J. H.: The physical environment of chloroplasts as related to their morphology and activity in vitro. Plant Physiol. 29, 448–457 (1954).PubMedCrossRefGoogle Scholar
  66. Mc Clendon, J. H., and L. R. Blinks: Use of high molecular weight solutes in the study of isolated intracellular structures. Nature (Lond.) 170, 557 (1952).CrossRefGoogle Scholar
  67. Mc Dermott, J. J.: The effect of the method of cutting on the moisture content of samples from tree branches. Amer. J. Bot. 28, 506–508 (1941).CrossRefGoogle Scholar
  68. Menke, W.: Untersuchungen über das Protoplasma grüner Pflanzenzellen der Chloroplasten aus Spinatblättern. Hoppe-Seylers Z. 263, 100–103 (1940).CrossRefGoogle Scholar
  69. Miller, E. C.: Plant physiology. New York: McGraw-Hill Co. 1938.Google Scholar
  70. Neish, A. C.: Studies on chloroplasts. I. Separation of chloroplasts, a study of factors affecting their flocculation and the calculation of the chloroplast content of leaf tissue from chemical analysis. Biochemie. J. 33, 293–299 (1939).Google Scholar
  71. Oehlkers, F.: Neue Versuche über zytologisch-genetische Probleme. Biol. Zbl. 57, 126–149 (1937).Google Scholar
  72. Opie, E. L.: An osmotic system within the cytoplasm of cells. J. of Exper. Med. 87, 425–444 (1948).CrossRefGoogle Scholar
  73. Osterhout, W. J. V.: Water relations in the cell. J. Gen. Physiol. 29, 73–78 (1945).CrossRefGoogle Scholar
  74. Palade, G. E.: The fine structure of mitochondria. Anat. Ree. 114, 427–452 (1952).CrossRefGoogle Scholar
  75. An electron microscope study of the mitochondrial structure. J. Histochem. a. Cytochem. 1, 188–211 (1953).Google Scholar
  76. Pauling, L.: The nature of the chemical bond. Ithaca, N. Y.: Cornell Univ. Press 1939.Google Scholar
  77. Pétrie, A. H. K., and J. G. Wood: Studies on the nitrogen metabolism of plants. I. The relation between the content of proteins, amino-acids, and water in the leaves. Ann. of Bot., N. S. 2, 33–60 (1938).Google Scholar
  78. Preston, R. D.: Biological units of cellulose structure. Symposia Soc. Exper. Biol. 6, 348–357 (1952).Google Scholar
  79. The molecular architecture of plant cell walls. London: Chapman & Hall 1953.Google Scholar
  80. Preston, R. D., and A. B. Wardrop: The submicroscopic organization of the walls of conifer cambium. Biochim. et Biophysica Acta 3, 549–559 (1949).CrossRefGoogle Scholar
  81. Preston, R. D., A. B. Wardrop and E. Nicolai: Fine structure of cell walls in fresh plant tissues. Nature (Lond.) 162, 957 (1948).CrossRefGoogle Scholar
  82. Rabinowitch, E. I.: Photosynthesis, Vol. I. New York: Interscience Publ. Inc. 1945.Google Scholar
  83. Ried, A.: Photosynthese und Atmung bei xerostabilen und xerolabilen Krustenflechten in der Nachwirkung vorausgegangener Entquellungen. Planta (Berl.) 41, 436–438 (1953).CrossRefGoogle Scholar
  84. Samish, R. M.: Dormancy in woody plants. Ann. Rev. Plant Physiol. 5, 183–204 (1954).CrossRefGoogle Scholar
  85. Scarth, G. W., and J. Levitt: The frost-hardening mechanism of plant cells. Plant Physiol. 12, 51–78 (1937).PubMedCrossRefGoogle Scholar
  86. Seifriz, W.: The structure of protoplasm. Ames, Iowa: State College Press 1942.Google Scholar
  87. Sissakian, N. M., i A. Kobiakova: The behavior of enzymes as an index of drought resistance in crop plants. IV. The effect of wilting upon the trend of esterification and hydrolysis of phosphoric esters in plants. Biochimija 5, 225–233 (1940).Google Scholar
  88. Snow, D.: The germination of mold spores at controlled humidities. Ann. Appl. Biol. 36, 1–13 (1948).CrossRefGoogle Scholar
  89. Spoehr, H. A., and H. W. Milner: Starch solution and amylolytic activity in leaves. Proc. Amer. Phil. Soc. 81, 37–78 (1939).Google Scholar
  90. Sponsler, O. L., and J. D. Bath: Molecular structure in protoplasm. In: W. Seifriz (Editor), The structure of protoplasm. Ames, Iowa: Iowa State College Press 1942.Google Scholar
  91. Stamm, A. J.: Colloid chemistry of cellulosic materials. U. S. Dept. Agric. Misc. Publ. 240, 1–90 (1936).Google Scholar
  92. Surface properties of cellulosic materials. In: L. E. Wise (Editor), Wood Chemistry, p. 449–550. New York: Reinhold & Co. 1944.Google Scholar
  93. Stanescu, P. P.: Daily variations in products of photosynthesis, water content, and acidity of leaves toward end of vegetation period. Amer. J. Bot. 23, 374–379 (1936).CrossRefGoogle Scholar
  94. Stocker, O.: Beiträge zu einer Theorie der Dürreresistenz. Planta (Berl.) 35, 445–465 (1948).CrossRefGoogle Scholar
  95. Thimann, K. V., and J. Bonner: The mechanism of the action of growth substances of plant. Proc. Roy. Soc. Lond., Ser. B 113, 126–149 (1933).CrossRefGoogle Scholar
  96. Vassiliev, I. M., and M. G. Vassiliev: Changes in carbohydrate content of wheat plants during the process of hardening for drought resistance. Plant Physiol. 11, 115–125 (1936).PubMedCrossRefGoogle Scholar
  97. Virgin, H. I.: Physical properties of protoplasm. Ann. Rev. Plant Phvsiol. 4, 363–382 (1953).CrossRefGoogle Scholar
  98. Wadleigh, C. H., H. G. Gauch and V. Davies: The trend of starch reserves in bean plants before and after irrigation of a saline soil. Proc. Amer. Soc. Horticult. Sci. 43, 201–209 (1943).Google Scholar
  99. Walter, H.: Plasmaquellung und Assimilation. Protoplasma (Berl.) 6, 113–156 (1929).CrossRefGoogle Scholar
  100. Die Hydratur der Pflanze. Jena: Gustav Fischer 1931.Google Scholar
  101. Grundlagen des Pflanzenlebens, 3. Aufl., Bd. I. Die Hydratur und ihre Bedeutung. Stuttgart: Eugen Ulmer 1949.Google Scholar
  102. Weier, T. E.: The structure of the chloroplast. Bot. Review 4, 497–530 (1938).CrossRefGoogle Scholar
  103. Wilson, C. C.: Diurnal fluctuations in growth in length of tomato stem. Plant Physiol. 23, 156–157 (1948).PubMedCrossRefGoogle Scholar
  104. Wilson, C. C., W. R. Boggess and P. J. Kramer: Diurnal fluctuations in the moisture content of some herbaceous plants. Amer. J. Bot. 40, 97–100 (1953).CrossRefGoogle Scholar
  105. Zirkle, C.: The plant vacuole. Bot. Review 3, 1–30 (1937).Google Scholar
  106. Zollinger, H. V.: Cytologic studies with the phase microscope. II. The mitochondria and other cytoplasmic constituents under various experimental conditions. Amer. J. Path. 24, 569–589 (1948).PubMedGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • C. R. Stocking

There are no affiliations available

Personalised recommendations