Advertisement

Abstract

The spatial relationships of the myriad enzymes concerned in cell metabolism have assumed great significance in our efforts to understand the intergrated economy of the plant cell. During investigations into the intracellular distribution of enzymes, the biochemical activities of the mitochondria have been widely studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Arreguin, B., J. Bonner and B. J. Wood: Studies on the mechanism of rubber formation in the guayule. III. Experiments with isotopic carbon. Arch. of Biochem. a. Biophysics 31, 234–247 (1951).CrossRefGoogle Scholar
  2. Bhagvat, K., and R. Hill: Cytochrome oxidase in higher plants. New Phytologist 50, 112–120 (1951).CrossRefGoogle Scholar
  3. Biale, J. B.: Metabolism in the avocado fruit at different levels of organisation. Abstr. Amer. Soc. Plant Physiol., p. 21, 1953.Google Scholar
  4. Bonner, J.: Synthesis of isoprenoid compounds in plants. J. Chem. Educat. 26, 628–631 (1949a).CrossRefGoogle Scholar
  5. Relations of respiration and growth in the Avena coleoptile. Amer. J. Bot. 36, 429–436 (1949b).Google Scholar
  6. Bonner, J., R. S. Bandurski and A. Millerd: Linkage of respiration to auxin-induced water uptake. Physiol. Plantarum (Copenh.) 6, 511–522 (1953).CrossRefGoogle Scholar
  7. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch. of Biochem. a. Biophysics 42, 135–148 (1953).CrossRefGoogle Scholar
  8. Bonner, J., M. W. Parker and J. C. Montermoso: Biosynthesis of rubber. Science (Lancaster, Pa.) 120, 549–551 (1954).Google Scholar
  9. Brummond, D. O., and R. H. Burris: Transfer of C14 by lupine mitochondria through the reactions of the tricarboxylic acid cycle. Proc. Nat. Acad. Sci. U.S.A. 39, 754–759 (1953).CrossRefGoogle Scholar
  10. Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209, 755–765 (1954).Google Scholar
  11. Conn, E. E., and L. C. T. Young: Reduction of oxidised glutathione by plant particles. Federat. Proc. 13, 194 (1954).Google Scholar
  12. Damodaran, M., and T. R. Venkatesen: Amide synthesis in plants. I. The succinoxidase system in plants. Proc. Indian Acad. Sci. Sect. B 13, 345–359 (1941).Google Scholar
  13. Davies, D. D.: The Krebs cycle enzyme system of pea seedlings. J. of Exper. Bot. 4, 173–183 (1953).CrossRefGoogle Scholar
  14. Dounce, A. L.: Cytochemical foundations of enzyme chemistry. The Enzymes. Edit. J. B. Sumner and K. Myrbäck, Vol. 1, Part 1, p. 187–266. New York: Academic Press 1950.Google Scholar
  15. Du Buy, H. G., M. W. Woods and M. D. Lackey: Enzymatic activities of isolated normal and mutant mitochondria and plastids of higher plants. Science (Lancaster, Pa.) 111, 572–574 (1950).Google Scholar
  16. Ducet, G., and A. Rosenberg: Activité respiratoire chez les végétaux supérieurs. II. Activités cytochrome oxydasique et polyphénoloxydasique chez quelques végétaux supérieurs. Bull. Soc. Chim. Biol. Paris 33, 321–336 (1951).PubMedGoogle Scholar
  17. Goddard, D. R., and H. A. Stafford: Localization of enzymes in the cells of higher plants. Annual Rev. Plant Physiol. 5, 115–132 (1954).CrossRefGoogle Scholar
  18. Goodwin, B. C., and E. R. Waygood: Succinoxidase inactivation by a lecithinase of barley seedlings. Nature (Lond.) 174, 517–518 (1954).CrossRefGoogle Scholar
  19. Green, D.E.: The cyclophorase complex of enzymes. Biol. Rev. 26, 410–455 (1951).CrossRefGoogle Scholar
  20. Fatty acid oxidation in soluble systems of animal tissue. Biol. Rev. 29, 330–366 (1954).Google Scholar
  21. Hackett, D. P., and E. W. Simon: Oxidative activity of particles prepared from the spadix of Arum maculatum. Nature (Lond.) 173, 162–163 (1954).CrossRefGoogle Scholar
  22. Hatch, M., and A. Millerd: Unpublished data. 1954.Google Scholar
  23. Hill, R., and K. Bhagvat: Cytochrome oxidase in flowering plants. Nature (Lond.) 143, 726 (1939).CrossRefGoogle Scholar
  24. Hogeboom, G. H., W. C. Schneider and M. J. Striebich: Localization and integration of cellular function. Cancer Res. 13, 617–632 (1953).PubMedGoogle Scholar
  25. Honda, S. L: Succinoxidase and cytochrome oxidase in barley roots. Plant Physiol. 1955a.Google Scholar
  26. The salt respiration of barley roots. Plant Physiol. 1955b.Google Scholar
  27. Humphreys, T. E., E. H. Newcomb, A. H. Bokman and P. K. Stumpf: Fat metabolism in higher plants. II. Oxidation of palmitate by a peanut particulate system. J. of Biol. Chem. 210, 941–948 (1954).Google Scholar
  28. Hunter jr., F. E.: Oxidative phosphorylation during electron transport. Phosphorus Metabolism. Edit. W. D. Mc Elroy and B. Glass, Vol. 1, p. 297–330. Baltimore: John Hopkins Press 1951.Google Scholar
  29. Jagendorf, A. T., and S. G. Wildman: The proteins of green leaves. VI. Centrifugal fractionation of tobacco leaf homogenates and some properties of isolated chloroplasts. Plant Physiol. 29, 270–279 (1954).PubMedCrossRefGoogle Scholar
  30. James, W. O.: The terminal oxidases in the respiration of the embryos and young roots of barley. Proc. Roy. Soc. Lond., Ser. B 141, 289–299 (1953).CrossRefGoogle Scholar
  31. James, W. O., and H. Beevers: The respiration of Arum spadix. A rapid respiration, resistant to cyanide. New Phytologist 49, 353–374 (1950).CrossRefGoogle Scholar
  32. Krebs, H. A.: The tricarboxylic acid cycle. Harvey Lect. 44, 165–199 (1950).Google Scholar
  33. Krebs, H. A., and W. A. Johnson: The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148–156 (1937).Google Scholar
  34. Laties, G. G.: Transphosphorylating systems as a controlling factor in mitochondrial respiration. Physiol. Plantarum (Copenh.) 6, 215–225 (1953a).CrossRefGoogle Scholar
  35. The physical environment and oxidative and phosphorylative capacities of higher plant mitochondria. Plant Physiol. 28, 557–575 (1953b).Google Scholar
  36. The dual role of adenylate in the mitochondrial oxidations of a higher plant. Physiol. Plantarum (Copenh.) 6, 199–214 (1953c).Google Scholar
  37. The nature of the respiratory rise in sliced tuberous root tissue. Abstr. Amer. Soc. Plant Physiol., p. 36–37, 1954a.Google Scholar
  38. The osmotic inactivation in situ of plant mitochondrial enzymes. J. of Exper. Bot. 5, 49–70 (1954b).Google Scholar
  39. Levitt, J.: Investigations of the cytoplasmic particles and proteins of potato tubers. I. Bound water and lipid contents. Physiol. Plantarum (Copenh.) 7, 109–116 (1954).CrossRefGoogle Scholar
  40. Mc Clendon, J. H.: The intracellular localization of enzymes in tobacco leaves. I. Identification of components of the homogenates. Amer. J. Bot. 39, 275–282 (1952).CrossRefGoogle Scholar
  41. The intracellular localization of enzymes in tobacco leaves. II. Cytochrome oxidase, catalase, and polyphenol oxidase. Amer. J. Bot. 40, 260–266 (1953).Google Scholar
  42. Millerd, A.: Succinoxidase of potato tuber. Proc. Linnean Soc. N. S. Wales 76, 123–132 (1951).Google Scholar
  43. Respiratory oxidation of pyruvate by plant mitochondria. Arch. of Biochem. a. Biophysics 42, 149–163 (1953).Google Scholar
  44. Millerd, A., and J. Bonner: The biology of plant mitochondria. J. Histochem. a. Cytochem. 1, 251–264 (1953).Google Scholar
  45. Acetate activation and acetcacetate formation in plant systems. Arch. of Biochem. a. Biophysics 49, 343–355 (1954).Google Scholar
  46. Millerd, A., J. Bonner, B. Axelrod and R. S. Bandurski: Oxidative and phosphorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37, 855–862 (1951).CrossRefGoogle Scholar
  47. Millerd, A., J. Bonner and J. B Biale: The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28, 521–531 (1953).PubMedCrossRefGoogle Scholar
  48. Morton, R. K.: Separation and purification of enzymes associated with insoluble particles. Nature (Lond.) 166, 1092–1095 (1950).CrossRefGoogle Scholar
  49. Newcomb, E. H.: Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exper. Biol. a. Med. 76, 504–509 (1951).Google Scholar
  50. Newcomb, E. H., and P. K. Stumpf: Fat metabolism in higher plants. I. Biogenisis of higher fatty acids by slices of peanut cotyledons in vitro. J. of Biol. Chem. 200, 233–239 (1953).Google Scholar
  51. Okunuki, K.: Über den Gaswechsel der Pollen. 3. Weitere Untersuchungen über die Dehydrasen aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 65–80 (1939).Google Scholar
  52. Pearson, J. A., and R. N. Robertson: The physiology of growth in apple fruits. VI. The control of respiration rate and synthesis. Austral. J. Biol. Sci. 7, 1–17 (1954).Google Scholar
  53. Price, C. A., and K. V, Thimann: The estimation of dehydrogenases in plant tissue. Plant Physiol. 29, 113–124 (1954).PubMedCrossRefGoogle Scholar
  54. Robertson, R. N.: Mechanism of absorption and transport of inorganic nutrients in plants. Annual. Rev. Plant Physiol. 2, 1–24 (1951).CrossRefGoogle Scholar
  55. Robertson, R. N., M. J. Wilkins, A. B. Hope and L. Nestel: Studies in the metabolism of plant cells. X. Respiratory activity and ionic relations of plant mitochondria. Austral. J. Biol. Sci. 8, 164–185 (1955).Google Scholar
  56. Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145–154 (1953).Google Scholar
  57. Schneider, W. C., and G. H. Hogeboom: Cytochemical studies of mammalian tissues. The isolation of cell components by differential centrifugation. A review. Cancer Res. 11, 1–22 (1951).Google Scholar
  58. Sharpensteen, H., and E. E. Conn: Preparation and properties of potato mitochondria. Abstr. Amer. Soc. Plant Physiol., p. 37, 1954.Google Scholar
  59. Smillie, R. M.: Enzymic activity of particles isolated from various tissues of the pea plant. Austral. J. Biol. Sci. 8, 186–195 (1955).Google Scholar
  60. Stafford, H.A.: Intracellular localization of enzymes in pea seedlings. Physiol. Plantarum (Copenh.) 4, 696–741 (1951).CrossRefGoogle Scholar
  61. Waygood, E. R.: Physiological and biochemical studies in plant metabolism. II. Respiratory enzymes in wheat. Canad. J. Res., Sect. C 28, 7–62 (1950).CrossRefGoogle Scholar
  62. Webster, G. C.: The occurrence of a cytochrome oxidase in the tissues of higher plants. Amer. J. Bot. 39, 739–745 (1952).CrossRefGoogle Scholar
  63. Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953a).Google Scholar
  64. Peptide bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953b).Google Scholar
  65. Enzymatic synthesis of gamma-glutamylcysteine in higher plants. Plant Physiol. 28, 728–730 (1953c).Google Scholar
  66. An energy dependent incorporation of amino acids into the protein of mitochondria. Plant Physiol. 29, 202–203 (1954a).Google Scholar
  67. Incorporation of radioactive glutamic acid into the proteins of higher plants. Plant Physiol. 29, 382–385 (1954b).Google Scholar
  68. Incorporation of radioactive amino acids into the protein of plant tissue homogenates. Plant Physiol. 1955a.Google Scholar
  69. Unpublished experiments. 1955b.Google Scholar
  70. Webster, G. C., and J. E. Varner: Peptide bond synthesis in higher plants. II. Studies on the mechanism of synthesis of y-glutamylcysteine. Arch, of Biochem. a. Biophysics 52, 22–32 (1954).CrossRefGoogle Scholar
  71. Weier, T. E.: The cytology of leaf homogenates. Abstr. Amer. Soc. Plant Physiol., Western Sect., p. 11, 1952.Google Scholar
  72. Weier, T. E., and C. R. Stocking: The chloroplast: structure, inheritance and enzymology. Bot. Review 18, 14–75 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • Adèle Millerd

There are no affiliations available

Personalised recommendations