Advertisement

Zusammenfassung

Unsere Kenntnis der Funktion der einzelnen Zellbestandteile ist im Augenblick in rascher Entwicklung begriffen. Das wird hauptsächlich durch die Ausarbeitung neuer Methoden zur Analyse der chemischen Zusammensetzung der einzelnen Zellabschnitte bedingt. Zwei Gruppen solcher Methoden zum Studium von Zellumsatzfragen müssen dabei unterschieden werden. Die erste hat die Analyse des Zellkernes als Ganzem zum Ziel, die andere die Analyse einzelner Organellen im einzelnen Zellkern. Die Größenordnungen, die die beiden Methodengruppen bearbeiten, liegen im ersten Falle bei 500–1000μ3 und im zweiten Falle bei 0,5–1μ3, d. h. das „Auflösungsvermögen“ ist ungefähr tausendmal größer. Dieser Größenordnungssprung trennt etwa auch die konventionellen Makromethoden der Chemie von denen der Mikromethoden. Die Arbeiten der erstgenannten Art, welche also die eigenen Strukturen des Zellkernes außer acht lassen, werden in hohem Maße durch die Möglichkeit erleichtert, in großem Umfange Zellkerne vom Cytoplasma zu trennen und so ein einheitliches Material zu gewinnen, an welchem übliche mikrochemische Methoden zur Anwendung kommen können. Die zweite Gruppe der Methoden, die mit größerer Auflösung als 1μ, arbeitenden Verfahren, fordert ein recht kompliziertes Instrumentarium. Die Entwicklung auf beiden Gebieten ist in den letzten Jahren rasch vorangeschritten. Ein wesentlicher Teil unserer heutigen Kenntnisse um die Mitwirkung des Zellkernes im Zellstoffwechsel stammt von der erstgenannten Arbeitsform, die vor allem von dem Interesse an der speziell leicht zugänglichen Substanzklasse der Enzyme dominiert wird, aber auch durch rein chemische Analysen der Kernsubstanzen und Untersuchungen mit radioaktiven Isotopen gefördert wurde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abood, L. G., and R.W. Gerard: Enzyme distribution in isolated particulates of rat peripherical nerve. J. Cellul. a. Comp. Physiol. 43, 379 (1954).CrossRefGoogle Scholar
  2. Abood, L. G., R. W. Gerard, J. Banks and R. D. Tschirgi: Substrate and enzyme distribution in cells. Amer. J. Physiol. 168, 728 (1952).PubMedGoogle Scholar
  3. Abrams, R.: Some factors influencing nucleic acid purine renewal in the rat. Arch, of Biochem. 33, 436 (1951).CrossRefGoogle Scholar
  4. Afzelius, B. A.: The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exper. Cell Res. 8, 147 (1955).CrossRefGoogle Scholar
  5. Albaum, H. G., and M. Ogur: An adenine-pentose-pyrophosphate from plant tissue. Arch. of Biochem. 15, 158 (1947).Google Scholar
  6. Allard, C., and A. Cantero: Adenosine triphosphatase study during rat liver damage. I. Adenosine-trophosphatase activity of rat liver during regeneration after partial hepatectomy. Canad. J. Med. Sci. 30, 295 (1952).Google Scholar
  7. Allfrey, A. H., H. Stern, A. E. Mirsky and H. Saetren: The isolation of cell nuclei in non-aqueous media. J. Gen. Physiol. 35, 529 (1951).CrossRefGoogle Scholar
  8. Allfrey, V.: Amino acid incorporation by isolated thymus nuclei. I. The role of Desoxyribonucleic acid in protein synthesis. Proc. Nat. Acad. Sci. 40, 881 (1954).PubMedCrossRefGoogle Scholar
  9. Allfrey, V., and A. E. Mirsky: Some aspects of the Desoxyribonuclease activities of animal tissues. J. Gen. Physiol. 36, 227 (1952).PubMedCrossRefGoogle Scholar
  10. Allfrey, V., H. Stern and A. E. Mirsky: Some enzymes of isolated cell nuclei. Nature (Lond.) 169, 128 (1952).CrossRefGoogle Scholar
  11. Altmann, H. W.: Über die Abgabe von Kernstoffen in das Protoplasma der menschlichen Leberzelle. Z. Naturforsch. 4b, 138 (1949).Google Scholar
  12. Morphologische Bemerkungen zur Funktion des Ganglienzellkernes. Naturwiss. 39, 348 (1952).Google Scholar
  13. Altmann, H. W., u. R. Meny: Der Funktionswechsel des Zellkernes im exokrinen Pankreasgewebe. Naturwiss. 39, 138 (1952).CrossRefGoogle Scholar
  14. Anderson, N. G.: On the nuclear envelope. Science (Lancaster, Pa.) 117, 53 (1953).Google Scholar
  15. Anderson, N. G., and K. M. Wilbur: Studies on isolated cell components. IV. The effect of various solutions on the isolated rat liver nucleus. J. Gen. Physiol. 35, 781 (1952).PubMedCrossRefGoogle Scholar
  16. Andresen, N., u. H. Holter: Cytoplasmic changes during starvation of the amoeba chaos chaos L. C. r. Trav. Labor. Carlsberg, Ser. chim. 25, 107 (1944/47).Google Scholar
  17. Apitz, K.: Über Pigmentbildungen in den Zellkernen meJanotischer Geschwülste. Virchows Arch. 300, 89 (1937).CrossRefGoogle Scholar
  18. Über die Bildung Russelscher Körperchen in den Plasmazellen multipler Myelome. Virchows Arch. 300, 113 (1937).Google Scholar
  19. Avery, O. T., C. M. Mac Leod and M. Mac Carty: Studies on the chemical nature of the pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. of Exper. Med. 79, 137 (1944).CrossRefGoogle Scholar
  20. Bahr, G. F., and W. Beermann: The fine structure of the nuclear membrane in the larval salivary gland and midgut of chironomus. Exper. Cell Res. 6, 519 (1954).CrossRefGoogle Scholar
  21. Bairati, A., u. F. Lehmann: Über die submikroskopische Struktur der Kernmembran bei Amoeba proteus. Experientia (Basel) 8, 60 (1952).CrossRefGoogle Scholar
  22. Ball, E. G.: Xanthine oxydase: purification and properties. J. of Biol. Chem. 128, 51 (1939).Google Scholar
  23. Baltus, E.: Observations sur le rôle biochimique du nucléole. Biochim. et Biophysica Acta 15, 263 (1954).CrossRefGoogle Scholar
  24. Barnum, C. P., C. W. Nash, E. Jennings, O. Nygaard and H. Vermund: The separation of pentose and desoxypentose nucleic acid from isolated mouse liver cell nuclei. Arch, of Biochem. 25, 376 (1950).Google Scholar
  25. Barratt, R. W., D. Newmeyer, D.D. Perkins and L. Garnjobst: Map construction in neurospora crassa. Adv. Genet. 6, 1 (1954).PubMedCrossRefGoogle Scholar
  26. Beale, R. N., R. J. C. Harris and E. M. F. Roe: The nucleic acid of normal and tumour tissues. The preparation and composition of a pentose nucleic acid from the fowl sarcoma G. R. C. H. 15. J. Chem. Soc. 1950, 1397.Google Scholar
  27. Bendich, A., P. J. Russel jr. and G. B. Brown: On the heterogeneitv of the desoxyribonucleic acids. J. of Biol. Chem. 203, 305 (1953).Google Scholar
  28. Berg, P., and W. K. Joklik: Enzymatic phosphorylation of nucleoside diphosphates. J. of Biol. Chem. 210, 657 (1954).Google Scholar
  29. Bergquist, R., u. A. Deutsch: Guanosine triphosphate and uridine triphosphate from muscle. Acta chem. scand. (Copenh.) 7, 1307 (1953).CrossRefGoogle Scholar
  30. Brachet, J.: Oxygen uptake of nucleated and non-nucleated halves of Amoeba proteus. Nature (Lond.) 168, 205 (1951).CrossRefGoogle Scholar
  31. Le rôle noyau cellulaire dans les oxydations et les phosphorylations. Biochim. et Biophysica Acta 9, 221 (1952).Google Scholar
  32. La composition enzymatique de fragments nucléés et énucléés d’amœbes. Biochim. et Biophysica Acta 14, 449 (1954).Google Scholar
  33. Constitution anormale du noyau et teneur en acide adenosine-triphosphorique de la cellule. Experientia (Basel) 10, 492 (1954).Google Scholar
  34. Brachet, J., and H. Chantrenne: Protein synthesis in nucleated and non-nucleated halves of Acetabularia roediterranea studied with carbon-14 dioxide. Nature (Lond.) 168, 950 (1951).CrossRefGoogle Scholar
  35. Brachet, J., and D. Szafarz: L’incorporation d’acide orotique radioactif dans des fragments nucléés et Anucléés d’écetabularia mediterranea. Biochim. et Biophysica Acta 12, 589 (1953).CrossRefGoogle Scholar
  36. Briggs, R., and T. J. King: Transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc. Nat. Acad. Sci. 38, 455 (1952).PubMedCrossRefGoogle Scholar
  37. Brown, G. B., P. M. Roll and H. Weinfeld: Biosynthesis of nucleic acids. Phosphorus Metabolism 2, 385 (1952).Google Scholar
  38. Brown, K. D., G. Jacobs and M. Laskowski: The distribution of nucleodepolymerases in calf thymus fractions. J. of Biol. Chem. 194, 445 (1952).Google Scholar
  39. Brues, A. M., M. M. Tracy and W. E. Cohn: Nucleic acids of rat liver and hepatoma: their metabolic turnover in relation to growth. J. of Biol. Chem. 155, 619 (1944).Google Scholar
  40. Brunish, R., D. L. Fatrley and J. M. Luck: Composition of histone prepared from rat liver desoxypentose nucleoprotein. Nature (Lond.) 168, 82 (1951).CrossRefGoogle Scholar
  41. Bullough, W. S.: Zusammenhang zwischen Mitose und energieliefernden Reaktionen. Biol. Rev. 27, 133 (1952).CrossRefGoogle Scholar
  42. Callan, H. G., and S. G. Tomlin: Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc. Roy. Soc. Lond., Ser. B 137, 367 (1950).CrossRefGoogle Scholar
  43. Carver, M. J., and L. E. Thomas: Lipoproteins from chicken erythrocytes with isoelectric points of 4, 65–4,85. Arch. of Biochem. 40, 342 (1952).CrossRefGoogle Scholar
  44. Caspersson, T.: Über den chemischen Aufbau der Strukturen des Zellkernes. Skand. Arch. Physiol. (Berl. u. Lpz.) 73, Suppl. 8 (1936).Google Scholar
  45. Cell growth and cell function. New York: Norton & Co. 1950.Google Scholar
  46. Chargaff, E.: Cell structure and the problem of blood coagulation. J. of Biol. Chem. 160, 351 (1945).Google Scholar
  47. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia (Basel) 6, 201 (1950).Google Scholar
  48. Chargaff, E., R. Lipshttz and Ch. Green: Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J. of Biol. Chem. 195, 155 (1952).Google Scholar
  49. Chargaff, E., R. Lipshttz, Ch. Green and M. E. Hodes: The composition of the desoxyribonucleic acid of salmon sperm. J. of Biol. Chem. 192, 223 (1951).Google Scholar
  50. Chargaff, E., E. Vischer, R. Doniger, Ch. Green and F. Misani: The composition of the desoxypentose nucleic acids of thymus and spleen. J. of Biol. Chem. 177, 405 (1949).Google Scholar
  51. Chargaff, E., S. Zamenhof, G. Brawerman and L. Kerin: Bacterial desoxypentose nucleic acids of unusual composition. J. Amer. Chem. Soc. 72, 3825 (1950).CrossRefGoogle Scholar
  52. Chargaff, E., S. Zamenhof and Ch. Green: Composition of human desoxypentose nucleic acid. Nature (Lond.) 165, 756 (1950).CrossRefGoogle Scholar
  53. Chayen, J.: Ascorbic acid and its intracellular localisation, with special reference to plants. Internat. Rev. Cytology 2, 78 (1953).Google Scholar
  54. Chayen, J., and K. P. Norris: Cytoplasmatic localization of nucleic acids in plant cells. Nature (Lond.) 171, 472 (1953).CrossRefGoogle Scholar
  55. Chèvremont, M., and H. Firket: Alkaline phosphatase of the nucleus. Internat. Rev. Cytology 2, 261 (1953).CrossRefGoogle Scholar
  56. Churney, L.: The osmotic properties of the nucleus. Biol. Bull. 82, 52 (1942).CrossRefGoogle Scholar
  57. Clark, A. M.: Some effects of removing the nucleus from amoeba. Austral. J. Exper. Biol. a. Med. Sci. 20, 241 (1942).CrossRefGoogle Scholar
  58. Crampton, C. F., R. Lipshitz and E. Chargaff: Studies on nucleoproteins. II. Fractionation of desoxyribonucleic acid through fractional dissication of their complexes with basic proteins. J. of Biol. Chem. 211, 125 (1954).Google Scholar
  59. Crosbie, G. W., R. M. S. Smellie and J. N. Davidson: V. The composition of the cytoplasmatic and nuclear ribonucleic acid of the liver cell. Biochemie. J. 54, 287 (1953).Google Scholar
  60. Daly, M. M., V. G. Allfrey and A. E. Mirsky: Purine and pyrimidine contents of some desoxypentose nucleic acids. J. Gen. Physiol. 33, 497 (1949/50).CrossRefGoogle Scholar
  61. Uptake of glycine-N15 by components of cell nuclei. J. Gen. Physiol. 36, 173 (1952).Google Scholar
  62. Daly, M. M., and A. E. Mirsky: Histones with high lysine content. J. Gen. Physiol. 38, 405 (1955).PubMedCrossRefGoogle Scholar
  63. Danielli, J. F.: A critical study of techniques for determining the cytological position of alkaline phosphatase. J. of Exper. Biol. 22, 110 (1945).Google Scholar
  64. Danielli, J. F., and D. G. Catchside: Phosphatase on chromosomes. Nature (Lond.) 156, 294 (1945).CrossRefGoogle Scholar
  65. Davidson, J. N., and R. A. Lawrie: Amino acids in nuclear proteins. Biochemie. J. 43, proc. XXIX (1948).Google Scholar
  66. Davidson, J. N., and I. Leslie: The changing cell number and composition of chick heart expiants growing in vitro. Exper. Cell Res. 2, 366 (1951).CrossRefGoogle Scholar
  67. Dianzani, M. U.: La ripartizione della alcooldeidrogenasi e della glucosideidrogenasi nelle cellule epatiche di ratti normale e di ratti con degenerazione grassa del fegato. Arch. di Fisiol. 49/50, 175 (1949/51).Google Scholar
  68. La ripartizione del sistema ossidante acido lattico nelle cellule del fegato e del vene di ratti normali e di ratti con degenerazione grassa del fegato. Arch. di Fisiol. 49/50, 181 (1949/51).Google Scholar
  69. La ripartizione della alfa-glicerofosfatodeidrogenasi nelle cellule epatiche di ratti normali e di ratti con degenerazione grassa, del fegato. Arch, di Fisiol. 49/50, 187 (1949/51).Google Scholar
  70. Dianzani, M. U., and I. Viti: The content and distribution of cytochrome c in the fatty liver of rats. Biochemie. J. 59, 141 (1955).Google Scholar
  71. Dittus, P.: Histologie und Cytologie des Interrenalorganes der Selachier unter normalen und experimentellen Bedingungen. Z. wiss. Zool. 154, 40 (1940).Google Scholar
  72. Dodgson, K. S., B. Spencer and J.Thomas: Studies on sulphatases. 6.. The localization of arylsulphatase in the rat liver cell. Biochemie. J. 56, 177 (1954).Google Scholar
  73. Studies on sulphatases. 9. The arylsulphatases of mammalian liver. Biochemie. J. 59, 29 (1955).Google Scholar
  74. Dounce, A. L.: Cytochemical foundations of enzyme chemistry. In Summer and Myrbäck: The Enzymes. New York: Acad. Press 1950.Google Scholar
  75. Enzyme systems of isolated cell nuclei. Ann. New York Acad. Sci. 50, 982 (1950).Google Scholar
  76. The significance of enzyme studies on isolated cell nuclei. Internat. Rev. Cytology 3, 199 (1954).Google Scholar
  77. Dounce, A. L., G. H. Tishkoff, S. R. Barnett and R. M. Freer: Free amino acids and nucleic content of cell nuclei isolated by a modification of Behrens’ technique. J. Gen. Physiol. 33, 629 (1950).PubMedCrossRefGoogle Scholar
  78. Edmonds, M., and G. A. Lepage: In vivo studies on acid-soluble precursors of nucleic acid purines. Federat. Proc. 12, 199 (1953).Google Scholar
  79. Elmes, P. C., J. D. Smith et J. C. White: 2nd Internat. Congr. Biochem. Abstr. of Communications, Paris, France. S. 7. 1952.Google Scholar
  80. Elson, D., and E. Chargaff: Observations on pentose nucleic acid composition in sea urchin embryos and in mammalian cell fractions. Phosphorus Metabolism 2, 329 (1952).Google Scholar
  81. Engbring, U.K., and M. Laskowski: Protein components of chicken erythrocyte nuclei. Biochim. et Biophysica Acta 11, 244 (1953).CrossRefGoogle Scholar
  82. Euler, H. V., I. Fischer, H. Hasselquist u. M. Jaarma: Stability of isolated cell nuclei in different media. Ark. Kemi, Mineral. Geol., Ser. A 21, Nr 12 (1945).Google Scholar
  83. Euler, H. V., u. L. Heller: Katalaseaktivität in Leberfraktionen normaler und sarkomtragender Ratten. Z. Krebsforsch. 56, 393 (1949).CrossRefGoogle Scholar
  84. Felix, K.: Zur Chemie des Zellkernes. Experientia (Basel) 8, 312 (1952).CrossRefGoogle Scholar
  85. Figqu, A., and M. Errera: Étude autoradiographique de l’incorporation dans le foie de souris de précurseurs des acides nucléiques et des protéines. Biochim. et Biophysica Acta 16, 45 (1955).CrossRefGoogle Scholar
  86. Fischer, H., u. L. Kreuzer: Über Gallin. Hoppe-Seylers Z. 293, 176 (1953).CrossRefGoogle Scholar
  87. Fraenkel-Conrat. H., and E. D. Ducay: The nucleic acid of egg white. Biochemie. J. 49, proc. XXIX (1951).Google Scholar
  88. Fraenkel-Conrat, H., N. S. Snell and E. D. Ducay: Avidin. Isolation and characterization of the protein and nucleic acid. Arch. of Biochem. a. Biophysics 39, 80 (1952).CrossRefGoogle Scholar
  89. Friedkin, M., and H. M. Kalckar: Desoxyribose-l-phosphate. I. Phosphorolysis and resynthesis of purine desoxyribose nucleoside. J. of Biol. Chem. 184, 437 (1950).Google Scholar
  90. Fürst, S. S., and G. B. Brown: On the role of glycine and adenine as precursors of nucleic acid purines. J. of Biol. Chem. 191, 239 (1951).Google Scholar
  91. Gall, J. G.: Observations on the nuclear membrane with the electron microscipe. Exper. Cell Res. 7, 197 (1954).CrossRefGoogle Scholar
  92. Gandelman, B., S. Zamenhof and E. Chargaff: The desoxypentose nucleic acid of three strains of escheria coli. Biochim. et Biophysica Acta 9, 399 (1952).CrossRefGoogle Scholar
  93. Goethart, G.: The thiamine pyrophosphate content of centrifugally prepared fractions of rat liver homogenate. Biochim. et Biophysica Acta 8, 479 (1952).CrossRefGoogle Scholar
  94. Graff, A., u. W. Hebekerl: Untersuchungen über die chemische Zusammensetzung und das biochemische Verhalten der präformierten Zeilbestandteile der Schilddrüse. Arch. Geschwulstforsch. 4, 349 (1952).Google Scholar
  95. Graupner, H., u. I. Fischer: Das Tintendrüsenepithel von Sepia vor, während und nach der Pigmentbildung. Z. Zellforsch. 21, 329 (1934).CrossRefGoogle Scholar
  96. Haas, E., C. J. Harrer and T. R. Hogness: Cytochrome reductase. II. Improved method of isolation; inhibition and inactivation; reaction with oxygen. J. of Biol. Chem. 143, 341 (1942).Google Scholar
  97. Hämmerltng, J.: Nucleo-cytoplasmic relationships in the development of Acetabularia. Internat. Rev. Cytology 2, 475 (1953).CrossRefGoogle Scholar
  98. Hämmerling, J., u. H. Stich: Über die Aufnahme von 32P in kernhaltige und kernlose Acetabularien. I. Z. Naturforsch. 9b, 149 (1954).Google Scholar
  99. Hamer, D.: A comparison of different protein fractions obtained from thymus nuclei isolated in an aqueous medium. Brit. J. Cane. 7, 151 (1953).CrossRefGoogle Scholar
  100. Hammarsten, E., P. Reichard and E. Saluste: Pyrimidine nucleosides as precursors of pyrimidines and polynucleotides. J. of Biol. Chem. 183, 105 (1950).Google Scholar
  101. Harper, H. H., and M. D. Morris: The amino acid composition of chick erythrocyte nucleohiston. Arch, of Biochem. 42, 61 (1953).CrossRefGoogle Scholar
  102. Harris, P., u. T. James: Electron microscope study of the nuclear membrane of Amoeba proteus in thin section. Experientia (Basel) 8, 384 (1954).CrossRefGoogle Scholar
  103. Harrison, M. F.: Composition of the liver cell. Proc. Roy. Soc. Lond., Ser. B 141, 203 (1951).CrossRefGoogle Scholar
  104. Harvey, E. B.: Parthenogenese merogony or cleavage without nuclei in Arbacia punctata. Biol. Bull. 71, 101 (1936).CrossRefGoogle Scholar
  105. Hecht, L. I., R. van Potter and E. Herbert: In vitro phosphorylation of pyrimidine desoxyribosemononucleotides. Biochim. et Biophysica Acta 15, 135 (1954).CrossRefGoogle Scholar
  106. Heller, L., u. N. Bargoni: Studien über die intrazelluläre Verteilung der Enzyme. III. Die intrazelluläre Verteilung der Monobutyrase in der Leber normaler und sarkomatöser Ratten. Ark. Kemi (Stockh.) 1, 447 (1949).Google Scholar
  107. Hertl, M.: Über den Nucleolar -apparat der Nervenzellen im Hypothalamus der weißen Maus. Z. Zellforsch. 41, 207 (1955).PubMedCrossRefGoogle Scholar
  108. Hers, H. G., J. Berthet, L. Berthet et Ch. de Duve: Le système hexose phosphatasique. III. Localisation intracellulaire des ferments par centrifugation fractionnée. Bull. Soc. Chim. biol. Paris 33, 21 (1951).PubMedGoogle Scholar
  109. Hett, J.: Weitere Befunde über den Austritt von Kernsubstanzen in das Protoplasma. Z. Zellforsch. 26, 473 (1927).CrossRefGoogle Scholar
  110. Higgins, H., J. A. Miller, J. M. Price and F. M. Strong: Levels and intracellular distribution of coenzyme A and pantothenic acid in rat liver and tumors. Proc. Soc. Exper. Biol. a. Med. 75, 462 (1950).Google Scholar
  111. Hoff-Jørgensen, E.: A microbiological assay of desoxyribonucleosides and desoxyribonucleic acid. Biochemie. J. 50, 400 (1952).Google Scholar
  112. Hoff-Jørgensen, E., u. E. Zeuthen: Evidence of cytoplasmic desoxyribosides in the frog’s egg. Nature (Lond.) 169, 245 (1952).CrossRefGoogle Scholar
  113. Hoffmann, C.: Über die Durchlässigkeit kernloser Zellen. Planta (Berl.) 4, 584 (1927).CrossRefGoogle Scholar
  114. Hoffmann-Berling, H.: Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim. et Biophysica Acta 14, 182 (1954).CrossRefGoogle Scholar
  115. Die Bedeutung des Adenosintriphosphat für die Zell- und Kernteilungsbewegungen in der Anaphase. Biochim. et Biophysica Acta 15, 332 (1954).Google Scholar
  116. Hoffmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.Google Scholar
  117. Hogeboom, G. H., and W. C. Schneider: Intracellular distribution of enzymes. VIII. The distribution of diphosphopyridine nucleotide-cytochrome C reductase in normal mouse liver and mouse hepatoma. J. Nat. Cane. Inst. 10, 983 (1950).Google Scholar
  118. Hogeboom, G. H., and W. C. Schneider: Cytochemical studies. IV. The synthesis of diphosphopyridin nucleotide by liver cell nuclei. J. of Biol. Chem. 197, 611 (1952).Google Scholar
  119. Intracellular distribution of enzymes. XI. Glutamic dehydrogenase. J. of Biol. Chem. 204, 233 (1953).Google Scholar
  120. Hogeboom, G. H., W. C. Schneider and M. J. Striebich: Cytochemical studies. V. On the isolation and biochemical properties of liver cell nuclei. J. of Biol. Chem. 196, 111 (1952).Google Scholar
  121. Holter, H.: Localization of enzymes in cytoplasm. Adv. Enzymol. 13, 1 (1952).Google Scholar
  122. Holter, H., u. S. Lovtrup: C. r. Trav. Labor. Carlsberg 27, 27 (1949).Google Scholar
  123. Holter, H., u. B. Pollock: C. r. Trav. Labor. Carlsberg 28, 221 (1952).Google Scholar
  124. Holtfreter, J.: Observations on the physico-chemical properties of isolated nuclei. Exper. Cell Res. 7, 95 (1954).CrossRefGoogle Scholar
  125. Horowitz, N. H.: Biochemical genetics of Neurospora. Adv. Genet. 3 (1950).Google Scholar
  126. Hurlbert, R. B., and V. R. Potter: A survey of the metabolism of orotic acid in the rat. J. of Biol. Chem. 195, 257 (1952).Google Scholar
  127. Nucleotid metabolism. I. The conversion of orotic acid-6-C14 to uridine nucleotides. J. of Biol. Chem. 209, 1 (1954).Google Scholar
  128. Hurlbert, R. B., H. Schmitz, A. F. Barnum and V. R. Potter: Nucleotid metabolism. II. Chromatographic separation of acid soluble nucleotides. J. of Biol. Chem. 209, 23 (1954).Google Scholar
  129. Hurst, R. O., A. M. Marko and G. C. Butler: The mononucleotide content of some desoxyribonucleic acids. J. of Biol. Chem. 204, 847 (1953).Google Scholar
  130. Isbell, E. R., H. K. Mitchell, A. Taylor and R. J. Williams: A preliminary study of B vitamins in cell nuclei. Univ. Texas Publ. 1942, No 4237, 81.Google Scholar
  131. James, T. W.: The role of the nucleus in the maintenance of ribonucleic acid in Amoeba proteus. Biochim. et Biophysica Acta 15, 367 (1954).CrossRefGoogle Scholar
  132. Johnson, F. H., and H. Eyring: The nature of the luciferin-luciferase system. J. Amer. Chem. Soc. 66, 848 (1944).CrossRefGoogle Scholar
  133. Kalckar, H. M.: The enzymatic synthesis of purine ribosides. J. of Biol. Chem. 167, 377 (1947).Google Scholar
  134. Differential spectrophotometry of purine compounds by means of specific enzymes. I. Determination of hydroxypurine compounds. J. of Biol. Chem. 167, 429 (1947).Google Scholar
  135. Kedlin, D., and E. F. Hartree: Prosthetic group of glucose oxidase (notatin). Nature (Lond.) 157, 801 (1946).Google Scholar
  136. Kensler, G. J., and H. Langemann: The distribution of choline oxidase activity in rat liver. Nature (Lond.) 192, 551 (1951).Google Scholar
  137. Khouvine, Y., et E. Baron: Influence du calcium sur la composition des histones de l’épithélioma atypique du rat. Bull. Soc. Chim. biol. Paris 33, 229 (1951).PubMedGoogle Scholar
  138. Khouvine, Y., et J. Grégoire: Désoxyribonucléoproteides de l’épithelioma atypique du rat. II. Acides désoxyribonucléiques. Bull. Soc. Chim. biol. Paris 35, 603 (1953).PubMedGoogle Scholar
  139. Khouvtne, Y., J. Grégoire et J. P. Zalta: Désoxyribonucléoproteides de l’épithelioma atypiques du rat. I. Histones et protéines non basiques. Bull. Soc. Chim. biol. Paris 35, 244 (1953).Google Scholar
  140. Kirkham, W. R., and L. E. Thomas: The isolation of globulins from cellular nuclei. J. of Biol. Chem. 200, 53 (1953).Google Scholar
  141. Klebs, G.: Die Bedingungen der Fortpflanzung bei einigen Algen und Pilzen. Jena: Gustav Fischer 1896.CrossRefGoogle Scholar
  142. Kornberg, A.: The metabolism of phosphorus-containing coenzymes. Phosphorus Metabolism 392 (1951).Google Scholar
  143. Krinsky, N. I., and J. Ganguly: Intracellular distribution of vitamin A ester and vitamin A alcohol in rat liver. J. of Biol. Chem. 202, 227 (1953).Google Scholar
  144. Laland, S. G., W. G. Overend and M. Webb: Desoxypentose nucleic acids. IV. The properties and composition of the desoxypentose nucleic acids from certain animal, plant and bacterial sources. J. Chem. Soc. Lond. 1952, 3324.Google Scholar
  145. Lamirande, G. de, C. Allard and A. Cantero: Cancer (N. Y.) 6, 179 (1953).CrossRefGoogle Scholar
  146. Lang, K., H. Lang, G. Siebert u. S. Lucius: Über den Einbau von C14-Glycokoll durch Zellkerne in vitro. Biochem. Z. 324, 217 (1953).PubMedGoogle Scholar
  147. Lang, K., u. G. Siebert: Untersuchungen über Stoffwechselvorgänge in Zellkernen. 2. Das Fehlen von Oxydationsfermenten in Zellkernen aus Rattenleber und Schweineniere. Biochem. Z. 320, 402 (1950).PubMedGoogle Scholar
  148. Untersuchungen über Stoff Wechselvorgänge in isolierten Zellkernen. 5. Über Energielieferung durch Glycolyse und Adenosin-triphosphat-Spaltung sowie über das Vorkommen von Dehydrasen in isolierten Zellkernen. Biochem. Z. 322, 196 (1951).Google Scholar
  149. Untersuchungen über Stoff Wechselprozesse in isolierten Zellkernen. 6. Methodik der Gewinnung reiner intakter Zellkerne in beliebigem Maßstab. Biochem. Z. 322, 360 (1952).Google Scholar
  150. Lang, K., G. Siebert, I. Baldus u. A. Corbert: Über das Vorkommen von Desoxyribonuclease und Kathepsin in Zellkernen aus Nieren. Experientia (Basel) 6, 59 (1950).CrossRefGoogle Scholar
  151. Lang, K., G. Siebert u. F. Fischer: Untersuchungen über Stoffwechselprozesse in isolierten Zellkernen. Biochem. Z. 324, 1 (1953).PubMedGoogle Scholar
  152. Lang, K., G. Siebert u. S. Lucius: Über die Hemmung der Arginase durch Stickstoff lost. Experientia (Basel) 8, 228 (1952).CrossRefGoogle Scholar
  153. Lang, K., G. Siebert, S. Lucius u. H. Lang: Untersuchungen über Stoff Wechselvorgänge in Zellkernen. 3. Über Arginase und Mangan in isolierten Zellkernen der Leber. Biochem. Z. 321, 538 (1951).PubMedGoogle Scholar
  154. Laskowski, M.: Nucleolytic enzymes. In Sumner and Myrbäck: The Enzymes, Vol. 1/2, p. 956. New York: Acad. Press 1951.Google Scholar
  155. Lee, N. D., and R. H. Williams: Protein turnover and enzymatic adaptation. J. of Biol. Chem. 204, 477 (1953).Google Scholar
  156. Leloir, L. F.: Enzymic isomerization and related processes. Adv. Enzymol. 14, 193 (1953).Google Scholar
  157. Lettré, H.: Some investigations on cell behaviour under various conditions: a review. Cancer Res. 12, 847 (1952).PubMedGoogle Scholar
  158. Zur Anwendbarkeit des Zellmodells nach Hoffmann-Berling für die Analyse der Zellbewegungen. Biochim. et Biophysica Acta 14, 584 (1954).Google Scholar
  159. Levine, C., and E. Chargaff: Phosphatide composition in different liver cell fractions. Exper. Cell Res. 3, 154 (1952).CrossRefGoogle Scholar
  160. Linet, N., and J. Brächet: L’évolution de l’acide ribonucléique et du glycogène dans des fragments nucléés et énucléés d’amcebes. Biochim. et Biophysica Acta 7, 607 (1951).CrossRefGoogle Scholar
  161. Lipmann, F., N. O. Kaplan, G. D. Novelli, L. C. Tuttle and B. M. Guirard: Isolation of Co-Enzyme A. J. of Biol. Chem. 186, 235 (1950).Google Scholar
  162. London, I. M., D. Shemin and D. Rittenberg: Synthesis of heme in vitro by the immature non nucleated mammalian erythrocyte. J. of Biol. Chem. 183, 749 (1950).Google Scholar
  163. Lorch, I. J., J. F. Danielli and S. Hörstadius: The effect of enucleation on the development of sea urchin eggs. Exper. Cell Res. 4, 253 (1953).CrossRefGoogle Scholar
  164. Lowe, C. U., and R. J. Salmon: Sex variation in alkaline phosphatase activity and desoxyribonucleic acid content of rat liver. Arch. of Biochem. a. Biophysics 34, 481 (1951).CrossRefGoogle Scholar
  165. Lu, K. H., and T. Winnick: Studies of nucleic acid metabolism in embryonic tissue culture with the aid of C14-labeled purines. Exper. Cell Res. 6, 345 (1954).CrossRefGoogle Scholar
  166. Biosynthesis of nucleic acids in embryonic chick heart tissue cultures. Federat. Proc. 13, 255 (1954).Google Scholar
  167. Lücke, B.: On osmotic behaviour of living cell fragments. J. Cellul. a. Comp. Physiol. 2, 193 (1932/33).CrossRefGoogle Scholar
  168. Ludewig, S., and A. Chanutin: Distribution of enzymes in the livers of control and X irradiated rats. Arch, of Biochem. 29, 8 (1950).Google Scholar
  169. Malkin, H. M.: Synthesis of ribonucleic acid purines and protein in enucleated and nucleated sea urchin eggs. J. Cellul. a. Comp. Physiol. 44, 105 (1954).CrossRefGoogle Scholar
  170. Marrian, D. H.: Concerning an aspect of desoxyribonucleic acid synthesis in regenerating rat liver. Biochim. et Biophysica Acta 14, 502 (1954).CrossRefGoogle Scholar
  171. Marshak, A.: Uptake of radioactive phosphorus by nuclei of liver and tumors. Science (Lancaster, Pa.) 92, 460 (1940).Google Scholar
  172. Purine and pyrimidine content of the nucleic acids of nuclei and cytoplasma. J. of Biol. Chem. 189, 607 (1951).Google Scholar
  173. Marshak, A., and C. Marshak: Desoxyribonucleic acid in Arbacia eggs. Exper. Cell Res. 5, 288 (1953).CrossRefGoogle Scholar
  174. Thymine in the acid-soluble fraction of Arbacia eggs. Biochim. of Biophysica Acta 15, 584 (1954).Google Scholar
  175. Mauritzen, C. M., A. B. Roy and E. Stedman: The ribonucleic acid content of isolated cell nuclei. Proc. Roy. Soc. Lond., Ser. B 140, 18 (1952).CrossRefGoogle Scholar
  176. Maver, M. E., and A. E. Greco: The hydrolysis of nucleoproteins by cathepsins from calf thymus. J. of Biol. Chem. 181, 853 (1949).Google Scholar
  177. The nuclease activities of cathepsin preparations from calf spleen and thymus. J. of Biol. Chem. 181, 861 (1949).Google Scholar
  178. Maver, M. E., A. E. Greco, E. Løvtrup and A. I. Dalton: Catheptic activities of the nuclei of normal, regenerating and neoplastic tissues of the rat. J. Nat. Cane. Inst. 13, 687 (1952/53).Google Scholar
  179. Mazia, D.: Modern trends in physiology and biochemistry, p. 77. New York: Acad. Press. 1952.Google Scholar
  180. Mazia, D., and H. I. Hirshfield: The nucleus-dependence of P32 uptake by the cell. Science (Lancaster, Pa.) 112, 297 (1950).Google Scholar
  181. Mazia, D., and D. M. Prescott: Nuclear function and mitosis. Science (Lancaster, Pa.) 120, 120 (1954).Google Scholar
  182. Mc Farlane, M. G., and A. G. Spencer: Changes in the water, sodium and potassium content of rat liver mitochondria during metabolism. Biochemie. J. 54, 569 (1953).Google Scholar
  183. Mc Indoe, W. M., and J. N. Davidson: The phosphorus compounds of the cell nucleus. Brit. J. Cane. 6, 200 (1952).CrossRefGoogle Scholar
  184. Metzger-Freed, L.: Phosphoprotein phosphatase activity in normal haploid and hybrid amphibian development. J. Cellul. a. Comp. Physiol. 41, 493 (1953).CrossRefGoogle Scholar
  185. Michaelis, P.: Cytoplasmic inheritance in Epilobium and its theoretical significance. Adv. Genet. 5, 288 (1954).Google Scholar
  186. Moyle, J. F.: Intracellular distribution of rhodanese in cardiac muscle. Nature (Lond.) 172, 508 (1953).CrossRefGoogle Scholar
  187. Muntwyler, E., S. Seifter and D. M. Harkness: Some effects of restriction of dietary protein on the intracellular components of liver. J. of Biol. Chem. 184, 181 (1950).Google Scholar
  188. Nyberg, A., J. Schuberth u. L. Änggård: On the intracellular distribution of catalase and alcohol dehydrogenase in horse, guinea pig and rat liver tissues. Acta chem. scand. (Copenh.) 7, 1170 (1953).CrossRefGoogle Scholar
  189. Odeblad, E., and H. Boström: Observations supporting the presence of a nuclear uptake of S35-labelled sulfate in the mouse. Exper. Cell Res. 4, 482 (1953).CrossRefGoogle Scholar
  190. Omachi, A., C. P. Barnum and D. Glick: Ouantitative distribution of an esterase among cytoplasmic components of mouse liver cells. Proc. Soc. Exper. Biol. Med. 67, 133 (1948).Google Scholar
  191. Ortmann, R.: Über Kernsekretion, Kolloid und Vakuolenbildung in Beziehung zum Nucleinsäuregehalt in Trophoblast-Riesenzellen der menschlichen Placenta. Z. Zellforsch. 34, 562 (1948).Google Scholar
  192. Palade, G. E.: Intracellular distribution of acid phosphatase in rat liver cells. Arch. of Biochem. 30, 144 (1951).Google Scholar
  193. Patterson, E. K., and M. E. Dackerman: Nucleic acid content in relation to cell size in the mature larval salivary gland of Drosophila melanogaster. Arch. of Biochem. 36, 97 (1952).CrossRefGoogle Scholar
  194. Pirotte, M., et V. Desreux: Distribution de la ribonucléase dans les extraits de granules cellulaires du foie. Bull. Soc. chim. Belg. 61, 167 (1952).CrossRefGoogle Scholar
  195. Polli, E., u. G. Ratti: Studien über Leucozyten. I. Die Fettfraktionen in intakten Zellen und in isolierten Zellkernen bei normalen und pathologischen Zuständen. Biochem. Z. 323, 546 (1953).PubMedGoogle Scholar
  196. Pollister, A. W.: Nucleoproteins of the nucleus. Exper. Cell Res. Suppl. 2, 59, 70 (1952).Google Scholar
  197. Pomerat, C. M.: Rotating nuclei in tissue cultures of adult human nasal mucosa. Exper. Cell Res. 5, 191 (1953).CrossRefGoogle Scholar
  198. Pontecorvo, G.: Genetic formulation of gene structure and gene action. Adv. Enzymol. 13, 121 (1952).Google Scholar
  199. Powell, L. T., and R. F. Krause: Vitamin A distribution in the rat liver cell. Arch. of Biochem. a. Biophysics 44, 102 (1953).CrossRefGoogle Scholar
  200. Prescott, D. M., and D. Mazia: The permeability of nucleated and enucleated fragments of Amoeba proteus to D2O. Exper. Cell Res. 6, 117 (1954).CrossRefGoogle Scholar
  201. Price, J. M., E. C. Miller and J. A. Miller: Intracellular distribution of vitamin B6 in rat and mouse livers and induced rat liver tumors. Proc. Soc. Exper. a Med. 71, 575 (1949).Google Scholar
  202. Price, J. M., J. A. Miller and E. C. Miller: The intracellular distribution of protein, nucleic acids and riboflavin in the livers of mice and hamsters fed 4-dimethyl-aminoazobenzene. Cancer Res. 11, 523 (1951).PubMedGoogle Scholar
  203. Price, J. M., J. A. Miller, E. C. Miller and G. M. Weber: Studies on the intracellular composition of liver and liver tumor from rats fed with 4-dimethyl-aminobenzene. Cancer Res. 9, 96 (1949).PubMedGoogle Scholar
  204. Rabinowitz, J. C, G. Jacobs, L. J. Teply, V. H. Cheldelin, E. Diamant, H. R. Mahler and F. M. Huennekens: The incorporation of 32P-labelled orthophosphate into nucleotides. Biochim. et Biophysica Acta 13, 413 (1954).CrossRefGoogle Scholar
  205. Ratner, S.: Conversion of d-glutamic acid to pyrrolidonecarboxylic acid by the rat. J. of Biol. Chem. 152, 559 (1944).Google Scholar
  206. Ratner, S., V. Nocito and D. E. Green: Glycine oxidase. J. of Biol. Chem. 152, 119 (1944).Google Scholar
  207. Raven, Ch. P.: In M. W. Woerdemann u. Ch. P. Raven, Monographs on the progress of research in Holland during the war. New York u. Amsterdam 1946.Google Scholar
  208. Reddi, K. K.: Desoxyribonucleic acid from Pseudomonas hydrophila. Biochim. et Biophysica Acta 15, 585 (1954).CrossRefGoogle Scholar
  209. Reed, L. J., and M. J. Cormier: Acetate-replacing factors for lactic acid bacteria: Intracellular distribution in liver. Proc. Soc. Exper. Biol. a. Med. 77, 724 (1951).Google Scholar
  210. Reichard, P., and B. Estborn: Utilization of desoxyribosides in the synthesis of polynucleotides. J. of Biol. Chem. 188, 839 (1951).Google Scholar
  211. Rerabek, J.: Fractionation of thyroid cells. Quantitative distribution of thyroxine, diiodtyrosine and nucleic acids in isolated cell fractions. Biochim. et Biophysica Acta 8, 389 (1952).CrossRefGoogle Scholar
  212. Rhodin, J.: Correlation of ultrastructural organisation and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Diss. Karol. Inst. Stockholm 1954.Google Scholar
  213. Rotherham, J., J. L. Irvin and E. M. Irvin: Desoxyribonucleoproteins of the nuclei of rat liver cells. Federat. Proc. 13, 285 (1954).Google Scholar
  214. Rowen, J. W., and A. Kornberg: The phosphorolysis of nicotinamide riboside. J. of Biol. Chem. 193, 497 (1951).Google Scholar
  215. Roy, A. B.: The intracellular distribution of sulphatase. Biochim. et Biophysica Acta 14, 149 (1954).CrossRefGoogle Scholar
  216. Sable, H. Z., P. B. Wilber, A. E.Cohen and M. R. Kane: Desoxyadenylic acid as acceptor for high energy phosphate. Biochim. et Biophysica Acta 13, 156 (1954).CrossRefGoogle Scholar
  217. Scharrer, E.: Über die Beteiligung des Zellkernes an sekretorischen Vorgängen in Nervenzellen. Frankf. Z. Path. 47, 143 (1934).Google Scholar
  218. Schein, A. H., and E. Young: Intracellular localization of arginase in homogenates of rat liver suspended in distilled water. Exper. Cell Res. 3, 383 (1952).CrossRefGoogle Scholar
  219. Schiller, E.: Variationsstatistische Untersuchungen über Kerneinschlüsse und Kristalle in der menschlichen Leber. Z. Zellforsch. 34, 335 (1949).Google Scholar
  220. Schlenk, F.. u. H. v. Euler: Desaminocozymase. Ark. Kemi, Mineral. Geol., Ser. B 12, 8 (1938) cf. C. A. 6277, 8 (1938).Google Scholar
  221. Schmidt, W. J.: Über Doppelbrechung und Feinbau der Kernmembran. Protoplasma 32, 193 (1939).CrossRefGoogle Scholar
  222. Schmitz, H.: Isolierung von freien Nucleotiden aus verschiedenen Geweben. Biochem. Z. 325, 555 (1954).PubMedGoogle Scholar
  223. Schmitz, H., R. B. Hurlbert and V. R. Potter: Nucleotid metabolism. III. Mono, di- and triphosphates of cytidine, guanosine and uridine. J. of Biol. Chem. 209, 41 (1954).Google Scholar
  224. Schneider, W. C.: II. The distribution of succinic dehydrogenase, cytochrome oxidase, adenosintriphosphatase and phosphorus compounds in normal rat liver and in rat hepatomas. Cancer Res. 6, 685 (1946).PubMedGoogle Scholar
  225. Intracellular distribution of enzymes. III. The oxydation of octanonic acid by rat liver fractions. J. of Biol. Chem. 176, 259 (1948).Google Scholar
  226. Schneider, W. C., and G. H. Hogeboom: Intracellular distribution of enzymes. V. Further studies on the distribution of cytochrome C in rat liver homogenates. J. of Biol. Chem. 183, 123 (1950).Google Scholar
  227. Intracellular distribution of enzymes. VI. The distribution of succinoxidase and cytochrome oxidase activities in normal mouse liver and mouse hepatoma.Google Scholar
  228. Intracellular distribution of enzymes. VII. The distribution of nucleic acids and adenosintriphosphatase in normal mouse liver and mouse hepatoma. J. Nat. Cane. Inst. 10, 977 (1950).Google Scholar
  229. Cytochemical studies of mammalian tissues: the isolation of cell components by differential centrifugation: A review. Cancer Res. 11, 1 (1951).Google Scholar
  230. Intracellular distribution of enzymes. IX. Certain purine-metabolizing enzymes. J. of Biol. Chem. 195, 161 (1952).Google Scholar
  231. Intracellular distribution of enzymes. X. Desoxyribonuclease and ribonuclease. J. of Biol. Chem. 198, 155 (1952).Google Scholar
  232. Schneider, W. C., and V. R. Potter: Intracellular distribution of enzymes. IV. Distribution of oxalacetic oxidase activity in rat liver and rat kidney fractions. J. of Biol. Chem. 177, 893 (1949).Google Scholar
  233. Shepherd, J. A., and G. Kalnitsky: Intracellular distribution of the phosphateactivated glutaminase of rat liver. J. of Biol. Chem. 192, 1 (1951).Google Scholar
  234. Siebert, G., K. Lang u. A. Corbert: Über das pH-Optimum der Desoxyribonuclease verschiedener Tierarten. Biochem. Z. 320, 418 (1950).PubMedGoogle Scholar
  235. Siebert, G., K. Lang u. H. Lang: Über Stoffwechselvorgänge in Zellkernen. 4. Über Vitamin B12 und Kobalt in Zellkernen. Biochem. Z. 321, 543 (1951).PubMedGoogle Scholar
  236. Siebert, G., K. Lang, S. Lucius u. G. Rossmüller: Untersuchungen über Stoffwechselprozesse an isolierten Zellkernen: Über den Einbau von anorganischem Phosphat (P32) in isolierte Zellkerne in vitro. Biochem. Z. 324, 311 (1953).PubMedGoogle Scholar
  237. Siebert, G., K. Lang, L. Müller, S. Lucius, E. Müller u. E. Kühle: Untersuchungen über Stoffwechselprozesse in isolierten Zellkernen. 7. Fermente des Aminosäure- und Peptidumsatzes in Zellkernen. Biochem. Z. 323, 532 (1953).PubMedGoogle Scholar
  238. Singer, T. P., and E. B. Kearney: Chemistry, metabolism and scope of action of the pyridine nucleotide. Adv. Enzymol. 15, 79 (1954).Google Scholar
  239. Smellie, R. M. S.: The uptake of 32P by ribonucleotides in liver cell fractions. Biochemie. J. 49, proc. XXXIV (1951).Google Scholar
  240. Smellie, R. M. S., and W. M. Mc Indoe: The incorporation of 32P and 14C into the nucleic acids of liver cell fractions. Biochemie. J. 52, proc. XXII (1952).Google Scholar
  241. Smith, E. E. B., and G. T. Mills: Uridine nucleotide compounds of liver. Biochim. et Biophysica Acta 13, 386 (1954).CrossRefGoogle Scholar
  242. Smith, J. D., and M. G. P. Stoker: The nucleic acids of rickettsia burneti. Brit. J. Exper. Path. 32, 433 (1951).Google Scholar
  243. Smith, J. D., and G. R. Wyatt: The composition of some microbial decxypentose nucleic acids. Biochemie. J. 49, 144 (1951).Google Scholar
  244. Stedman, E., and E. Stedman: The basic proteins of cell nuclei. Trans. Roy. Soc. Lond., Ser. B 235, 565 (1951).CrossRefGoogle Scholar
  245. The chemical nature and functions of the components of cell nuclei. Cold Spring Harbor Symp. Quant. Biol. 12, 224 (1951).Google Scholar
  246. Steinert, M.: La synthèse de l’acide ribonucléique au cours du développement embryonnaire des batraciens. Bull. Soc. Chim. biol. Paris 33, 549 (1951).Google Scholar
  247. Sur la présence de bases puriques libres dans les œfs de batraciens. Arch. internat. Physiol. 60, 192 (1952).Google Scholar
  248. Stern, H., V. Allfrey, A. E. Mirsky and H. Saetren: Some enzymes of isolated nuclei. J. Gen. Physiol. 35, 559 (1951).CrossRefGoogle Scholar
  249. Stern, H., and A. E. Mirsky: The isolation of wheat germ nuclei and some aspects of their glycolytic mechanism. J. Gen. Physiol. 36, 181 (1952).PubMedCrossRefGoogle Scholar
  250. Soluble enzymes of nuclei isolated in sucrose and non-aqueous media. J. Gen. Physiol. 37, 177 (1953).Google Scholar
  251. Stich, H.: Trypaflavin und Ribonucleinsäure. Untersucht an Mäusegeweben, Condylostoma spec, und Acetabularia raediterranea. Naturwiss. 38, 435 (1951).CrossRefGoogle Scholar
  252. Experimentelle karyologische und cytochemische Untersuchungen an Acetabularia mediterranea. Z. Naturforsch. 6b, 319 (1951).Google Scholar
  253. Stokkinger, L.: Das Kernkörperchen. Protoplasma 42, 365 (1953).CrossRefGoogle Scholar
  254. Straub, F. B., H. S. Corran and D. E. Green: Mechanism of the oxidation of reduced coenzyme. I. Nature (Lond.) 143, 119 (1939).CrossRefGoogle Scholar
  255. Strength, D. R., J. R. Christensen and L.J.Daniel: The requirement of diphosphopyridine nucleotide for choline dehydrogenase activity. J. of Biol. Chem. 203, 63 (1953).Google Scholar
  256. Strittmatter, C. F., and E. G. Ball: The intracellular distribution of cytochrome compounds and of oxidative enzyme activity in rat liver. J. Cellul. a. Comp. Physiol. 43, 57 (1954).CrossRefGoogle Scholar
  257. Sung, S. Ch., and J. N. Williams: The intracellular distribution of diphosphopyridine nucleotide nucleosidase in rat liver. J. of Biol. Chem. 197, 175 (1952).Google Scholar
  258. Swendseid, M. E., F. H. Bethell and W. W. Ackermann: The intracellular distribution of vitamin B12 and folinic acid in mouse liver. J. of Biol. Chem. 190, 791 (1951).Google Scholar
  259. Thomson, R. Y., F. C. Heagy, W.C. Hutchison and J. N. Davidson: The desoxyribonucleic acid content of the rat cell nucleus and its use in expressing the results of tissue analysis, with particular reference to the composition of liver tissue. Biochemie. J. 53, 460 (1953).Google Scholar
  260. Tsuboi, K. K.: Phosphomonoesterase activity in hepatic tissues of the mouse. Biochim. et Biophysica Acta 8, 173 (1952).CrossRefGoogle Scholar
  261. Tyrell, L. W., and D. Richter: The lipids of cell nuclei isolated from human brain cortex. Biochemie. J. 49, proc. LI (1951).Google Scholar
  262. Urbani, E.: Sur la teneur en amylase de fragments nucléés et énucléés d’Amoeba proteus. Biochim. et Biophysica Acta 9, 108 (1952).CrossRefGoogle Scholar
  263. Vanderhaeghe, F.: Les effects de l’énucléation sur la synthèse des protéines chez Acetabularia mediterranea. Biochim. et Biophysica Acta 15, 281 (1954).CrossRefGoogle Scholar
  264. Vincent, W. S.: The isolation and chemical properties of the nucleoli of starfish oocytes. Proc. Nat. Acad. Sci. 38, 139 (1952).PubMedCrossRefGoogle Scholar
  265. Vischer, E., S. Zamenhof and E. Chargaff: Microbial nucleic acids: The desoxypentose nucleic acids of avian tubercle bacilli and yeast. J. of Biol. Chem. 177, 429 (1949).Google Scholar
  266. Wachstein, M., and E. Meisel: The histochemical distribution of 5-nucleotidase and unspecific alkaline phosphatase in the testicle of various species and in two human seminomas. J. Histochem. a. Cytochem. 2, 137 (1954).CrossRefGoogle Scholar
  267. Waddington, C. H.: Quinquennial report 1947–1951 of the institute of Animal Genetics, Univ. of Edinburgh 1952.Google Scholar
  268. Wajzer, J., and F. Baron: Enzyme-promoted reactions between ribose phosphoric esters and purine bases. Bull. Soc. Chim. Biol. 31, 750 (1949).Google Scholar
  269. Wang, T. Y., D. T. Mayer and L. E. Thomas: A lipoprotein of rat liver nuclei. Exper. Cell Res. 4, 102 (1953).CrossRefGoogle Scholar
  270. Warburg, O., u. W. Christian: Über Aktivierung der Robinsonschen Hexose-mono-Phosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242, 206 (1931).Google Scholar
  271. Watson, M. L.: Pores in the mammalian nuclear membrane. Biochim. et Biophysica Acta 15, 475 (1954).CrossRefGoogle Scholar
  272. Webb, M.: The intracellular distribution of the desoxyribonucleases of mammalian tissues. Exper. Cell Res. 5, 16 (1953).CrossRefGoogle Scholar
  273. Whitfeld, P. R.: Nucleic acids in erythrocytic stages of a malaria parasite. Nature (Lond.) 169, 751 (1952).CrossRefGoogle Scholar
  274. Williams, J. N.: Intracellular distribution of choline oxidase. J. of Biol. Chem. 194, 139 (1952).Google Scholar
  275. Intracellular distribution of betaine aldehyde oxidase. J. of Biol. Chem. 195, 37 (1952).Google Scholar
  276. Wyatt, G. R.: The quantitative analysis of desoxypentose nucleic acids. Biochemie. J. 47, proc. VII (1950).Google Scholar
  277. Recognition and estimation of 5-methylcytosine in nucleic acids. Biochemie. J. 48, 581 (1951).Google Scholar
  278. The purine and pyrimidine composition of desoxyribonucleic acid. Biochemic. J. 48, 584 (1951).Google Scholar
  279. The nucleic acids of some insect viruses. J. Gen. Physiol. 36, 201 (1952).Google Scholar
  280. Wyatt, G. R., and S. S. Cohen: Nucleic acids of rickettsiae. Nature (Lond.) 170, 846 (1952).CrossRefGoogle Scholar
  281. Zamenhof, S., G. Brawerman and E. Chargaff: On the desoxypentose nucleic acid from several microorganisms. Biochim. et Biophysica Acta 9, 402 (1952).CrossRefGoogle Scholar
  282. Zamenhof, S., and E. Chargaff: Evidence of the existence of a core in desoxyribonucleic acids. J. of Biol. Chem. 178, 531 (1948).Google Scholar
  283. Dissymmetry in nucleotide sequence of desoxypentose nucleic acids. J. of Biol. Chem. 187, 1 (1950).Google Scholar

Zusammenfassende Darstellungen: die ältere Literatur berücksichtigen und über den Rahmen des vorhegenden Abschnittes hinaus Probleme des Zellkernes behandeln.: Bücher

  1. Sharp, L.: Fundamentals of Cytology. New York: McGraw-Hill Book Co. 1943.Google Scholar
  2. Gresson, R.: Essentials of general cytology (mit vier Kapiteln Pflanzencytologie von H. Heslop Clark). Edinburgh: Oliver & Boyd 1948.Google Scholar
  3. Robertis, E., W. Nowinski and F. Saez: General cytology. Philadelphia: W.B. Saunders & Company 1948.Google Scholar
  4. Brächet, J.: Chemical embryology. New York: Interscience Publ. 1950.Google Scholar
  5. Caspersson, T.: Cell growth and cell function. New York: Norton & Co. 1950.Google Scholar
  6. Baddilly, J.: Nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 20, 149 bis 178 (1951).CrossRefGoogle Scholar
  7. Davidson, J.: The biochemistry of the nucleic acids. New York: J. Willey & Sons 1952.Google Scholar
  8. Schräder, F.: Mitosis, the movements of chromosomes in cell division. New York: Columbia Univ. Press 1953.Google Scholar
  9. Tischler, G.: Allgemeine Pflanzenkaryologie. In Linsbauers Handbuch der Pflanzenanatomie, S. 385–1040. 1921–1953.Google Scholar

Einzelpublikationen

  1. Greenberg, D.M.: Chemical pathways of metabolism, Bd. 1. New York: Academic Press 1954.Google Scholar
  2. Milovidov, P.: Physik und Chemie des Zellkernes. Berlin: Gebrüder Bornträger, Teil I 1949; Teü II 1954.Google Scholar
  3. Jordan, D. O.: Physicochemical properties of the nucleic acids. Progr. in Biophysics a. Biophysical Chem. 2, 51–89 (1951).Google Scholar
  4. Jordan, D.O.: Nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 21, 209–244 (1952).CrossRefGoogle Scholar
  5. Brown, G. B.: Nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 22, 141 bis 178 (1953).CrossRefGoogle Scholar
  6. Bücher, T.: Probleme des Energietransportes innerhalb lebender Zellen. Adv. Enzymol. 14, 1–48 (1953).Google Scholar
  7. Alfert, M.: Composition and structure of giant chromosomes. Internat. Rev. Cytology 3, 131–176 (1954).CrossRefGoogle Scholar
  8. Allen, F.W.: Nucleic acids. Annual Rev. Biochem. 23, 99–124 (1954).CrossRefGoogle Scholar
  9. Davison, P. F., B. E. Conway and I. A. V. Butler: The nucleoprotein complex of the cell nucleus and its reactions. Progr. Biophysics a. Biophysical Chem. 4, 148–194 (1954).Google Scholar
  10. Dounce, A.: The significance of enzyme studies on isolated cell nuclei. Internat. Rev. Cytology 3, 199–224 (1954).CrossRefGoogle Scholar
  11. Singer, T. P., and E. B. Kearney: Chemistry, metabolism and scope of action of the pyridine nucleotide coenzymes. Adv. Enzymol. 15, 79–140 (1954).Google Scholar

Symposia

  1. Genes and chromosomes, structure and organization. Cold Spring Harbor, Symp. Ouant. Biol. 1941.Google Scholar
  2. Nucleic Acid. Symposia Soc. Exper. Biol. 1 (1947).Google Scholar
  3. The Chemistry and physiology of the nucleus. Exper. Cell Res. Suppl. 2 (1952).Google Scholar
  4. Structural aspects of cell physiology. Symposia Soc. Exper. Biol. 6 (1952).Google Scholar
  5. Während der Drucklegung dieses Bandes erschien das Handbuch der Physiologischen Chemie, Flaschenträger und Lehnartz, in dem K. Lang und G. Siebert das Kapitel „Chemische Leistungen der morphologischen Zellelemente“ schrieben, auf das besonders hingewiesen wird. Bd. 2, S. 1064–1156. Berlin: Springer 1954.Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • G. F. Bahr

There are no affiliations available

Personalised recommendations