Advertisement

Die Mitwirkung von Enzymen im Zellstoffwechsel. Konstitution, Kinetik und cytochemische Grundlagen

  • Franz Duspiva
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)

Zusammenfassung

Im Protoplasma laufen chemische Umsetzungen unaufhörlich nebeneinander ab und bilden untereinander ein äußerst komplexes Netzwerk. In diesem ständigen Stoffumsatz, der durch Reaktionen unterhalten wird, deren Aufeinanderfolge einer gewissen Ordnung unterliegt und deren Umfang gegenseitig fein abgestimmt ist, offenbart sich das Leben. Das Material, aus dem die Zell- und Organstrukturen bestehen, ist das Produkt dieser chemischen Umsetzungen; die Energie, die zum Aufbau der Strukturen benötigt und den errichteten Strukturen zur Ausübung ihrer Funktionen zugeführt werden muß, wird durch einen Oxydations-Reduktionsmechanismus bereitgestellt. Alle diese Prozesse gehen direkt oder indirekt auf die Wirkung von Enzymen zurück. Es ist die Leistung der Enzyme, den chemischen Umsatz mit ausreichender Geschwindigkeit zu erhalten, ohne daß Milieufaktoren, wie Temperatur, Wasserstoffionenkonzentration und Druck, wesentlich von der an der Erdoberfläche natürlicherweise vorkommenden Größenordnung abzuweichen brauchen. Ein Charakteristikum der biologischen Katalyse ist ihre kontrollierte Wirkung. Die Aktivität der Enzyme in einem gegebenen Reaktionssystem hängt nicht nur von physiko-chemischen Faktoren, wie Temperatur, Säuregrad und Druck, sondern vor allem auch von der Substratkonzentration, der Konzentration der Reaktionsprodukte und verschiedenartiger Begleitstoffe ab, die eine hemmende oder aktivierende Wirkung auf die katalytische Reaktion ausüben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zusammenfassende Darstellungen und Bücher

  1. Ammon, R., u. W. Dirscherl: Fermente, Hormone, Vitamine und die Beziehungen dieser Wirkstoffe zueinander, 2. Aufl. Leipzig 1948.Google Scholar
  2. Baldwin, E.: Dynamic aspects of biochemistry. Cambridge 1949.Google Scholar
  3. Bertalanffy, L. V.: Theoretische Biologie. Bd. 2 Stoffwechsel, Wachstum. Berlin 1942.Google Scholar
  4. Bersin, Th.: Kurzes Lehrbuch der Enzymologie, 2. Aufl. Leipzig 1939.Google Scholar
  5. Berzelius, J.: Lehrbuch der Chemie, 3. Aufl. Übersetzt von L. Wöhler. Dresden u. Leipzig 1837.Google Scholar
  6. Dixon, M.: Multi enzyme systems. Cambridge: Univ. Press 1951.Google Scholar
  7. Edsall, J. T.: Enzymes and enzyme systems. Cambridge, Mass.: Harvard Univ. Press 1951.Google Scholar
  8. Euler, H. V.: Chemie der Enzyme. München 1925–1934.Google Scholar
  9. Flaschenträger, B., u. E. Lehnartz: Physiologische Chemie. Berlin-Göttingen-Heidelberg: Springer. Bd. 1. 1951, Bd. 2. 1954.Google Scholar
  10. Glick, D.: Techniques of histo- and cytochemistry. New York: Interscience 1949.Google Scholar
  11. Haldane, J. B. S.: Enzymes. London 1930.Google Scholar
  12. Haldane, J. B. S., u. K. G. Stern: Allgemeine Chemie der Enzyme. Dresden u. Leipzig 1932.Google Scholar
  13. Hoffmann-Ostenhof, O.: Enzymologie. Wien: Springer 1954.Google Scholar
  14. Langenbeck, W.: Die organischen Katalysatoren, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1949.Google Scholar
  15. Mittasch, A.: Über Katalyse und Katalysatoren in Chemie und Biologie. Berlin 1936.Google Scholar
  16. Nord, F., u. R. Weidenhagen: Ergebnisse der Enzymforschung, Bd. 1ff. Leipzig 1932.Google Scholar
  17. Nord, F. F., u. C. H. Werkman: Advances in enzymology, Bd. 1ff. New York 1941.Google Scholar
  18. Northrop, J. H.: Crystalline enzymes; the chemistry of pepsin, trypsin and bacteriophage. New York 1939.Google Scholar
  19. Oppenheimer, C.: Die Fermente und ihre Wirkungen, 5. Aufl. Leipzig: Bd. 1–4, 1924–1929; Suppl. 2 Bde. 1936–1938.Google Scholar
  20. Sumner, J. B., u. K. Myrbäck: The enzymes. 2 Bde. in 4 Teilen. New York 1951/52.Google Scholar
  21. Sumner, J. B., u. G. F. Somers: Chemistry and methods of enzymes. 2. Aufl. New York 1947.Google Scholar
  22. Waksman, S. A., u. W. C. Davison: Enzymes, properties distribution, methods and applications. Baltimore 1926.Google Scholar
  23. Waldschmidt-Leitz, E.: Die Enzyme, Wirkungen und Eigenschaften. Braunschweig 1926.Google Scholar
  24. Warburg, O.: Schwermetalle als Wirkungsgruppen von Fermenten. Berlin 1946.Google Scholar
  25. Willstätter, R.: Untersuchungen über Enzyme, 2 Bde. Berlin 1928.Google Scholar

Originalaufsätze

  1. Abood, L. G., R. W. Gerard and S. Ochs: Electrical stimulation of metabolism of homogenates and particulates. Amer. J. Physiol. 171, 134–139 (1952).PubMedGoogle Scholar
  2. Ada, G. L.: Phospholipid metabolism in rabbit-liver cytoplasm. Biochemie. J. 45, 422–428 (1949).Google Scholar
  3. Alivisatos, S. G., and O. F. Denstedt: Nicotinamide inhibition of tri- and diphosphopyridine nucleotide-linked dehydrogenases. J. of Biol. Chem. 199, 493–504 (1952).Google Scholar
  4. Anderson, E. P., and S. E. G. Åqvist: A double precursor study of nucleic acid turnover in normal and regenerating liver. J. of Biol. Chem. 202, 513–520 (1953).Google Scholar
  5. Andresen, N., F. Engel u. H. Holter: Succinic dehydrogenase and cytochrome oxidase in Chaos chaos. C. r. Trav. Labor. Carlsberg 27, 408–420 (1951).Google Scholar
  6. Anson, M. L., and A. E. Mirsky: The equüibrium between active native trypsin and inactive denatured trypsin. J. Gen. Physiol. 17, 393–398 (1934).PubMedCrossRefGoogle Scholar
  7. Augustinsson, K.-B.: Substrate concentration and specificity of choline ester-splitting enzymes. Arch, of Biochem. 23/24, 111–126 (1949).Google Scholar
  8. Augusttnsson, K.-B., and D. Nachmansohn: Studies on Cholinesterase. VI. Kinetics of the inhibition of acetylcholine esterase. J. of Biol. Chem. 179, 543–559 (1949).Google Scholar
  9. Auhagen, E.: Co-Carboxylase, ein neues Co-Enzym der alkoholischen Gärung. Z. physiol. Chem. 204, 149–167 (1932).CrossRefGoogle Scholar
  10. Bamann, E., u. J. N. Mukherjee: Über die protoplasmatische Verankerung der Leberesterase. (Zur Kenntnis der Zellverankerung der Enzyme.) Z. physiol. Chem. 229, 1–14 (1934).CrossRefGoogle Scholar
  11. Barnum, C. P., and R. A. Huseby: The intracellular heterogeneity of pentose nucleic acid as evidenced by the incorporation of radiophosphorus. Arch, of Biochem. 29, 7–26 (1950).Google Scholar
  12. Bartley, W., and R. E. Davies: Secretory activity of mitochondria. Biochemie. J. 52, 20 (1952).Google Scholar
  13. Beard, R. L.: Chemical activity ratios in relation to species-specifity. J. Econ. Entomol. 44, 469–471 (1951).Google Scholar
  14. Behrens, M.: Über die Verteilung der Lipase und Arginase zwischen Zellkern und Protoplasma der Leber. Z. physiol. Chem. 258, 27 (1939).CrossRefGoogle Scholar
  15. Bernstein, I. A., K. Lentz, M. Malm, P. Schambye and H. G. Wood: Degradation of glucose-C14 with Leuconostoc mesenteroides; alternate pathways and tracer patterns. J. of Biol. Chem. 215, 137–152 (1955).Google Scholar
  16. Berthet, J., L. Berthet, F. Appelmans and C. de Duve: Tissue fractionation studies. II. The nature of the linkage between acid phosphatase and mitochondria in rat-liver. Biochemic. J. 50, 182–189 (1951).Google Scholar
  17. Berthet, J., and C. de Duve: Tissue fractionation studies. I. The existence of a mitochondria-linked enzymically inactive form of acid phosphatase in rat-liver tissue. Biochemic. J. 50, 174–181 (1951).Google Scholar
  18. Bertrand, G.: Chimie organique. — Sur l’intervention du manganèse dans les oxydations provoquées par la laccase. C. r. Acad. Sci. Paris 124, 1032–1035 (1897).Google Scholar
  19. Booij, H. L., u. H. P. Wolverkamp: On the concepts „limiting factor“, „master reaction“ and “temperature analysis”. Rec. Trav. chim. Pays-Bas (Amsterd.) 64, 316–317 (1945).CrossRefGoogle Scholar
  20. Bottelier, H. P., H. Holter u. K. Linderstrøm-Lang: Studies on enzymatic histochemistry. XXXVI. Determination of peptidase activity, nitrogen content and reduced weight in roots of the barley, hordeum vulgare. C. r. Trav. Labor. Carlsberg, Sér. Chim. 24, 289–313 (1943).Google Scholar
  21. Brächet, J.: Oxygen uptake of nucleated and non-nucleated halves of Amoeba proteus. Nature (Lond.) 168, 205 (1951).CrossRefGoogle Scholar
  22. Chemical Embryology. New York: Interscience 1950.Google Scholar
  23. Brachet, J., and H. Chantrenne: Protein synthesis in nucleated and non-nucleated halves of Acetabularia mediterranea studied with carbon-14 dioxide. Nature (Lond.) 168, 950 (1951).CrossRefGoogle Scholar
  24. Bradfield, J. R. G.: The localization of enzymes in cells. Biol. Rev. 25, 113–157 (1950).CrossRefGoogle Scholar
  25. Brummond, D. O., u. R. H. Burris: Transfer of C14 by lupine mitochondria through reactions of the tricarboxylic acid cycle. Proc. Nat. Acad. Sci. USA. 39, 754–759 (1953).PubMedCrossRefGoogle Scholar
  26. Büchner, E.: Alkoholische Gärung ohne Hefezellen. Ber. dtsch. chem. Ges. 30, 117–124, 1110–1113 (1897).CrossRefGoogle Scholar
  27. Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. et Biophysica Acta 1, 292–314 (1947).CrossRefGoogle Scholar
  28. Proteine als Träger der Fermentwirkung. In Biologie und Wirkung der Fermente. Berlin-Göttingen-Heidelberg 1953a.Google Scholar
  29. Probleme des Energietransports innerhalb lebender Zellen. Adv. Enzymol. 14, 1–42 (1953b).Google Scholar
  30. Burton, A. C.: The properties of the steady state compared to those of equilibrium as shown in characteristic biological behavior. J. Cellul. a. Comp. Physiol. 14, 327–349 (1939).CrossRefGoogle Scholar
  31. Butenandt, A.: Biochemie der Gene und Genwirkungen. Verh. Ges. dtsch. Naturforsch. (97. Verslg) 1952.Google Scholar
  32. Cagniard-Latour, M.: Mémoire sur la fermentation vineuse. Ann. Chim. Physique 68, 206–222 (1838).Google Scholar
  33. Casida, J. E., and M. A. Stahmann: Metabolism and mode of action of schradan. J. Agricult. a. Food. Chemistry 1, 883–888 (1953).CrossRefGoogle Scholar
  34. Chance, B.: The kinetics of the enzyme-substrate compound of peroxydase. J. of Biol. Chem. 151, 553–577 (1943).Google Scholar
  35. An intermediate compound in the catalase-hydrogen peroxide reaction. Acta chem. scand. (Copenh.) 1, 236–267 (1947).Google Scholar
  36. The enzyme-substrate compounds of catalase and peroxides. Nature (Lond.) 161, 914–917 (1948).Google Scholar
  37. The primary and secondary compounds of catalase and methyl or ethyl hydrogen peroxide. J. of Biol. Chem. 180, 947–959 (1949).Google Scholar
  38. Enzyme-substrate compounds. Adv. Enzymol. 12, 153–190 (1951).Google Scholar
  39. The kinetics of the complexes of peroxidase formed in the presence of chlorite or hypochlorite. Arch, of Biochem. a. Biophysics 41, 425–431 (1952).Google Scholar
  40. Chance, B., D. S. Greenstein and F. J. W. Roughton: The mechanism of catalase action. I. Steady-state analysis. Arch. of Biochem. a. Biophysics 37, 301–321 (1952).CrossRefGoogle Scholar
  41. Chance, B., and J. Higgins: Peroxidase kinetics in coupled oxidation; an experimental and theoretical study. Arch. of Biochem. a. Biophysics 41, 432–441 (1952).CrossRefGoogle Scholar
  42. Chantrenne, H.: Hétérogénéité des granules cytoplasmiques du fois de souris. Biochim. et Biophysica Acta 1, 437 (1947).CrossRefGoogle Scholar
  43. Chantrenne-van Halteren, M. B., et J. Brächet: La respiration de fragments nuclées et énuclées d’ «Acetabularia mediterranea». Arch, internat. Physiol. 60, 187–188 (1952).CrossRefGoogle Scholar
  44. Claude, A.: Particulate compounds of normal and tumor cells. Science (Lancaster, Pa.) 91, 77–78 (1940).Google Scholar
  45. The constitution of protoplasm. Science (Lancaster, Pa.) 97, 451–456 (1943).Google Scholar
  46. The constitution of mitochondria and microsomes, and the distribution of nucleic acid in the cytoplasm of a leukemic cell. J. of Exper. Med. 80, 19–29 (1944).Google Scholar
  47. Fractionation of mammalian liver cells by differential centrifugation. J. of Exper. Med. 84, 51–59 (1946).Google Scholar
  48. Conway, E. J., and M. Downey: An outer metabolic region of the yeast cell. Biochemie. J. 47, 347–355 (1950).Google Scholar
  49. Crozier, W. J.: Zahlreiche. Arbeiten in J. Gen. Physiol. 7, 9, 10, 13.Google Scholar
  50. Davidson, J. N., W. M. Mc Indoe and R. M. S. Smellie: The uptake of 32P by ribonucleotides in liver-cell fractions. Biochemic. J. 49, 36 (1951).Google Scholar
  51. Desnuelle, P.: Quelques techniques nouvelles pour l’étude de la structure des protéines. Adv. Enzymol. 14, 261–310 (1953).Google Scholar
  52. Dianzani, M. U.: On the osmotic behaviour of mitochondria. Biochim. et biophysica Acta 11, 353–367 (1953a).CrossRefGoogle Scholar
  53. Action of papain and of trypsin on the morphology and some enzymatic activities of isolated mitochondria. Experientia (Basel) 9, 343–345 (1953b).Google Scholar
  54. Dounce, A. L.: The significance of enzyme studies on isolated nuclei. Internat. Rev. Cytology 3, 199–223 (1954).CrossRefGoogle Scholar
  55. Duspiva, F.: Die Verteilung der Peptidase auf Kern und Plasma bei Froschoocyten im Verlauf der zweiten Wachstumsperiode. Biol. Zbl. 62, 403–431 (1942).Google Scholar
  56. Enzymatische Histo- und Cytochemie. In Hoppe-Seyler-Thierfelder’s Handbuch der physiol. und pathol.-chem. Analyse, 10. Aufl., Bd. 2. Berlin-Göttingen -Heidelberg 1955.Google Scholar
  57. Duve, Chr. de, and J. Berthet: The use of differential centrifugation in the study of tissue enzymes. Internat. Rev. Cytology 3, 225–275 (1954).CrossRefGoogle Scholar
  58. Duve, Chr.. de, J. Berthet, L. Berthet and F. Appelmans: Permeability of mitochondria. Nature (Lond.) 167, 389–390 (1951).CrossRefGoogle Scholar
  59. Duve, Chr. de, R. Gianetto, F. Appelmans and R. Wattiaux: Enzymic content of the mitochondria fraction. Nature (Lond.) 172, 1143–1144 (1953).CrossRefGoogle Scholar
  60. Elliot, K. A. C., and D. Keilin: The haematin content of horseradish peroxidase. Proc. Roy. Soc. Lond., (Ser. B) 114, 210–222 (1934).CrossRefGoogle Scholar
  61. Euler, H. V., H. Albers u. F. Schlenk: Hochgereinigte Co-Zymase. Z. physiol. Chem. 234, 1 (1935a).CrossRefGoogle Scholar
  62. Chemische Untersuchungen an hochgereinigter Co-Zymase. Z. physiol. Chem. 240, 113–126 (1936).Google Scholar
  63. Euler, H. V., u. R. Vestin: Zur Kenntnis der Wirkungen der Co-Zymase. Z. physiol. Chem. 237, 1–7 (1935b).CrossRefGoogle Scholar
  64. Felix, K., M. Decker u. L. Roka: Dehydrogenase-Aktivität der Mitochondrien verschiedener Organe. Hoppe-Seylers Z. 294, 79–85 (1953).CrossRefGoogle Scholar
  65. Fisher, H. F., E. E. Conn, B. Vennesland and F. H. Westheimer: The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase. J. of Biol. Chem. 202, 687–697 (1953).Google Scholar
  66. Frey-Wyssling, A.: Submicroscopic morphology of protoplasm and its derivatives, 2. Aufl. New York u. Amsterdam 1947. 1. Aufl. i. dtsch. Berlin 1938.Google Scholar
  67. Die submikroskopische Struktur des Cytoplasmas. In L. V. Heilbrunn u. F. Weber, Protoplasmatologia, Bd. 2, A 2. Wien 1955.Google Scholar
  68. Gey, G., P. Sapranaukas and F. B. Bang: Cine-phase microscope studies of the behavior of Mitochondria in living cells and of actors affecting their morphology. 4. Annual meeting of the histochemical society, Chicago 1953.Google Scholar
  69. Gottschalk, A.: On the mechanism of enzyme action. Rev. Pure a. Appl. Chem. 3, 179–206 (1953).Google Scholar
  70. Grassmann, W.: Neue Methoden und Ergebnisse der Enzymforschung. Erg. Physiol. 27, 407–551 (1928).CrossRefGoogle Scholar
  71. Green, D. E.: The cyclophorase system. In J. T. Edsall, Enzymes and enzyme systems. Cambridge, Mass. 1951.Google Scholar
  72. Greenberg, G. R.: De novo synthesis of hypoxanthine via inosine-5-phosphate and inosine. J. of Biol. Chem. 190, 611–631 (1951).Google Scholar
  73. Gunsalus, I. C., and W. D. Bellamy: A function of Pyridoxal. J. of Biol. Chem. 155, 357 (1944).Google Scholar
  74. Gustafson, T., and P. Lenicque: Studies on mitochondria in the developing sea urchin egg. Exper. Cell Res. 3, 251–274 (1952).CrossRefGoogle Scholar
  75. Hadidian, Z., and H. Hoagland: Chemical pacemakers. I. Catalytic brain iron. II. Activation energies of chemical pacemakers. J. Gen. Physiol. 23, 81–99 (1939).PubMedCrossRefGoogle Scholar
  76. Haldane, J. B. S.: The biochemistry of genetics. London 1954.Google Scholar
  77. Harman, J. W.: Studies on mitochondria: I. The association of cyclophorase with mitochondria. Exper. Cell Res. 1, 382–393 (1950a).CrossRefGoogle Scholar
  78. Studies on mitochondria: II. The structure of mitochondria in relation to enzymatic activity. Exper. Cell Res. 1, 394–402 (1950b).Google Scholar
  79. Harvey, E. B.: The development of half and quarter eggs of arbacia punctulata and of strongly centrifuged whole eggs. Biol. Bull. 62, 155–167 (1932).CrossRefGoogle Scholar
  80. Development of the parts of sea urchin eggs separated by centrifugal force. Biol. Bull. 64, 125 (1933).Google Scholar
  81. Harvey, E. N.: The tension at the surface of marine eggs, especially those of the sea urchin, arbacia. Biol. Bull. 61, 273–279 (1931).CrossRefGoogle Scholar
  82. Heppel, L. A., and V. T. Porterfield: Metabolism of inorganic nitrite and nitrate esters. I. The coupled oxidation of nitrite by peroxideforming systems and catalase. J. of Biol. Chem. 178, 549–556 (1949).Google Scholar
  83. Hird, F. J. R., and E.V. Rowsell: Additional transaminations by insoluble particle preparations of rat liver. Nature (Lond.) 166, 517–518 (1950).CrossRefGoogle Scholar
  84. Hirs, C. H. W., St. Moore and W. H. Stein: A chromatographic investigation of pancreatic ribonuclease. J. of Biol. Chem. 200, 493–506 (1953).Google Scholar
  85. Hoagland, H.: Pacemaker aspects of nervous activity. Cold Spring Harbor Symp. Quant. Biol. 4 (1936).Google Scholar
  86. Hogeboom, G. H.: Separation and properties of cell components. Federat. Proc. 10, 640–645 (1951).Google Scholar
  87. Hogeboom, G. H., and W. C. Schneider: Cytochemical studies of mammalian Tissues. III. Isocitric dehydrogenase and triphosphopyridine nucleotide cytochrome c reductase of mouse liver. J. of Biol. Chem. 186, 417–427 (1950).Google Scholar
  88. Cytochemical studies. VI. The synthesis of diphosphopyridinnucleotide by liver cell nuclei. J. of Biol. Chem. 197, 611–620 (1952).Google Scholar
  89. Hogeboom, G. H., W. C. Schneider and G. E. Palade: The isolation of morphologically intact mitochondria from rat liver. Proc. Soc. Exper. Biol. a. Med. 65, 320–321 (1947).Google Scholar
  90. Cytochemical studies of mammalian tissues. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J. of Biol. Chem. 172, 619–635 (1948).Google Scholar
  91. Holter, H.: Studies on enzymatic histochemistry. XVIII. Localization of peptidase in marine ova. J. Cellul. a. Comp. Physiol. 8, 179–200 (1936).CrossRefGoogle Scholar
  92. Enzymverteilung im Protoplasma. Arch. exper. Zellforsch. 19, 232–237 (1937).Google Scholar
  93. Zur Chemie einiger Zellstrukturen. Arch, exper. Zellforsch. 22, 534–540 (1939).Google Scholar
  94. Localization of enzymes in cytoplasm. Adv. Enzymol. 13, 1–20 (1952).Google Scholar
  95. Distribution of some enzymes in the cytoplasma of amoebae. Proc. Roy. Soc. Lond., Ser. B 142, 140–146 (1954).Google Scholar
  96. Holter, H., and W. L. Doyle: Studies on enzymatic histochemistry. XXVIII. Enzymatic studies on protozoa. J. Cellul. a. Comp. Physiol. 12, 295–308 (1938).CrossRefGoogle Scholar
  97. Holter, H., and M. J. Kopac: Studies on enzymatic histochemistry. XXIV. Localization of peptidase in the ameba. J. Cellul. a. Comp. Physiol. 10, 423–437 (1937).CrossRefGoogle Scholar
  98. Holter, H., and S. Løvtrup: Proteolytic enzymes in Chaos chaos. C. r. Trav. Labor. Carlsberg, Sér. Chim. 27, 27–62 (1949).Google Scholar
  99. Holter, H., M. Ottesen and R. Weber: Separation of cytoplasmic particles by centrifugation in a density-gradient. Experentia (Basel) 9, 346–348 (1953).CrossRefGoogle Scholar
  100. Holzer, H.: Über Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels in lebenden Zellen. In Biologie und Wirkung der Fermente. Berlin- Göttingen-Heidelberg 1953.Google Scholar
  101. Horecker, B. L., M. Gibbs, H. Klenow and P. Z. Smyrniotis: The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J. of Biol. Chem. 207, 393–403 (1954).Google Scholar
  102. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of biol. Chem. 205, 661–682 (1953).Google Scholar
  103. Huennekens, F. M.: Studies on the cyclophorase system. 15. The malic oxidase. Exper. Cell Res. 2, 115–125 (1951).CrossRefGoogle Scholar
  104. Hütchens, J. O., M. J. Kopac and M. E. Krahl: The cytochrome oxidase content of centrifugally separated fractions of unfertilized arbacia eggs. J. Cellul. a. Comp. Physiol. 20, 113–116 (1942).CrossRefGoogle Scholar
  105. Jeener, R.: L’Hétérogénéité des granules cytoplasmiques: Données complémentaires fournies par leur fractionnement en solution saline concentrée. Biochim. et biophysica Acta 2, 633–641 (1948).CrossRefGoogle Scholar
  106. Jeener, R., and D. Szafarz: Relations between the rate of renewal and the intracellular localization of ribonucleic acid. Arch, of Biochem. 26, 54–67 (1950).Google Scholar
  107. Johnson, M. J., G. H. Johnson and W. H. Peterson: The magnesium-activated leucyl peptidase of animal erepsin. J. of Biol. Chem. 116, 515–526 (1936).Google Scholar
  108. Keilin, D., and E. F. Hartree: Coupled oxidation of alcohol. Proc. Roy. Soc. Lond., Ser. B 119, 141–159 (1936).CrossRefGoogle Scholar
  109. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochemie. J. 49, 88–104 (1951).Google Scholar
  110. Kedlin, D., and T. Mann: On the haematin compound of peroxidase. Proc. Roy. Soc. Lond., Ser. B 122, 119–133 (1937).CrossRefGoogle Scholar
  111. Kennedy, E. P., and A. L. Lehninger: Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J. of Biol. Chem. 179, 957–972 (1949).Google Scholar
  112. Krahl, M. E.: Metabolic activities and cleavage of eggs of the sea urchin, Arbacia punctulata. Biol. Bull. 98, 175–217 (1950).CrossRefGoogle Scholar
  113. Krebs, H.A.: Die Steuerung der Stoffwechselvorgänge. Dtsch. med. Wschr. 1956, Nr 1, 4–8.Google Scholar
  114. Kühnau, J.: Antagonismen und Konkurrenzen um den Platz am Ferment. In Biologie und Wirkung der Fermente. Berlin-Göttingen-Heidelberg 1953.Google Scholar
  115. Kützing, F.: Mikroskopische Untersuchungen über Hefe und Essigmutter, nebst mehreren anderen dazu gehörigen vegetabilischen Gebilden. J. prakt. Chem. 11, 385–409 (1837).CrossRefGoogle Scholar
  116. Kuff, E. L., and W. C. Schneider: Intracellular distribution of enzymes. XII. Biochemical heterogeneity of mitochondria. J. of Biol. Chem. 206, 677–685 (1954).Google Scholar
  117. Kuhn, R., D. B. Hand u. M. Florkin: Über die Natur der Peroxydase. Z. physiol. Chem. 201, 255–266 (1931).CrossRefGoogle Scholar
  118. Kuhn, R., H. Rudy u. Th. Wagner-Jauregg: Über Lactoflavin (Vitamin B2). Ber. dtsch. Chem. Ges. 66, 1950 bis 1956 (1933).CrossRefGoogle Scholar
  119. Kunitz, M., and J. H. Northrop: Isolation of a crystalline protein from pancreas and its conversion into a new crystalline proteolytic enzyme by trypsin. Science (Lancaster, Pa.) 78, 558–559 (1933).Google Scholar
  120. Inactivation of crystalline trypsin. J. Gen. Physiol. 17, 591–615 (1934).Google Scholar
  121. Laidler, K. J., and J. P. Hoare: The molecular kinetics of the urea-urease system. I. The kinetic laws. J. Amer. Chem. Soc. 71, 2699–2702 (1949).CrossRefGoogle Scholar
  122. Lang, K: Die Biologie der Enzyme. In Biologie und Wirkung der Enzyme. 4. Kolloquium der Ges. für physiol. Chem., Mosbach. Berlin-Göttingen-Heidelberg 1953.Google Scholar
  123. Lang, K, u. G. Siebert: Die chemischen Leistungen der morphologischen Zellelemente. In B. Flaschenträger u. E. Lehnartz, Physiologische Chemie, Bd. 2, Teil B. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  124. Lang, K., G. Siebert, I. Baldus u. A. Corbet: Über das Vorkommen von Desoxyribonuclease und Kathepsin in Zellkernen aus Nieren. Experientia (Basel) 6, 59–60 (1950).CrossRefGoogle Scholar
  125. Lardy, H. A.: Respiratory enzymes. Minneapolis: Burgess Publ. Comp. 1950.Google Scholar
  126. Lehmann, F. E.: Die submikroskopische Organisation der Zelle. Verh. Ges. dtsch. Naturforsch. 1955.Google Scholar
  127. Lehmann, F. E., u. R. Biss: Elektronenoptisehe Untersuchungen an Plasmastrukturen des Tubifex-Eies. Rev. suisse Zool. 56, 264 (1949).Google Scholar
  128. Lehninger, A. L.: The organised respiratory activity of isolated rat-liver mitochondria. In J. T. Edsall, Enzymes and enzyme systems. Cambridge, Mass. 1951.Google Scholar
  129. Liebig, J. V.: Über die Erscheinungen der Gährung, Fäulnisz und Verwesung und ihre Ursachen. Ann. Pharmazie 30, 250–287 (1839).CrossRefGoogle Scholar
  130. Linderstrom-Lang, K., u. H. Holter: Die enzymatische Histochemie. In Methoden der Fermentforschung von Bamann u. Myrbaeck, S. 1132–1162. 1941.Google Scholar
  131. Lineweaver, H., and D. Burk: The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56, 658–666 (1934).CrossRefGoogle Scholar
  132. Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160, 173–190 (1945).Google Scholar
  133. On chemistry and function of coenzyme A. Bacter. Rev. 17, 1–16 (1953).Google Scholar
  134. Lipmann, F., N. O. Kaplan, G. D. Novelli, L. C. Tuttle and B. M. Guirard: Isolation of Coenzyme A. J. of Biol. Chem. 186, 235–243 (1950).Google Scholar
  135. Loewus, F. A., P. Ofner, H. F. Fisher, F. H. Westheimer and B. Vennesland: The enzymatic transfer of hydrogen. II. The reaction catalysed by lactic dehydrogenase. J. of Biol. Chem. 202, 699–704 (1953).Google Scholar
  136. Loewus, M. W., and D. R. Briggs: The number of catalytically active sites present on the chymotrypsin molecule. J. of Biol. Chem. 199, 857–864 (1952).Google Scholar
  137. Lohmann, K., u. Ph. Schuster: Über die Co-Carboxylase. Naturwiss. 25, 26 (1937).CrossRefGoogle Scholar
  138. Untersuchungen über die Co-Carboxylase. Biochem. Z. 294, 188–214 (1937).Google Scholar
  139. Lotspeich, W. D., R. A. Peters u. T. H. Wilson: The inhibition of aconitase by “inhibitor fractions” isolated from tissues poisoned with fluoroacetate. Biochemic. J. 51, 20–25 (1952).Google Scholar
  140. Lundblad, G., and E. Hultin: Liberation of proteolytic enzymes of the sea urchin egg by ribonuclease. Exper. Cell Res. 6, 249–250 (1954).CrossRefGoogle Scholar
  141. Lynen, F., u. E. Reichert: Zur chemischen Struktur der „aktivierten Essigsäure“. Angew. Chem. 63, 47–48 (1951).CrossRefGoogle Scholar
  142. Lynen, F., E. Reichert u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. “Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 574, 1–32 (1951).CrossRefGoogle Scholar
  143. Mac Farlane, M. G.: Inhibition of succinoxidase activity of mitochondria by Clostridium welchii toxin. Biochemic. J. 47, 29–30 (1950).Google Scholar
  144. Mac Farlane, M. G., and A. G. Spencer: Changes in the water, sodium and potassium content of rat-liver mitochondria during metabolism. Biochemic. J. 54, 569–575 (1953).Google Scholar
  145. Marshall jr., J. M.: Distributions of chymotrypsinogen, procarboxypeptidase, desoxyribonuclease and ribonuclease in bovine pankreas. Exper. Cell. Res. 6, 210–212 (1954).CrossRefGoogle Scholar
  146. Martin, A. J. P., and R. R. Porter: The chromatographic fractionation of ribonuclease. Biochemic. J. 49, 215–218 (1951).Google Scholar
  147. Mazia, D., and H. I. Hirshfield: The nucleus-dependence of P32 uptake by the cell. Science (Lancaster, Pa.) 112, 297–299 (1950).Google Scholar
  148. Mc Indoe, W. M., and J. N. Davidson: The phosphorus compounds of the cell nucleus. Brit. J. Cancer 6, 200–214 (1952).PubMedCrossRefGoogle Scholar
  149. Metcalf, R. L., and R. B. March: Studies of the mode of action of parathion and its derivatives and their toxicity to insects. J. Econ. Entomol. 42, 721–728 (1949).PubMedGoogle Scholar
  150. Michaelis, L.: Fundamental principles in oxidation-reduction. Biol. Bull. 96, 293–295 (1949).PubMedCrossRefGoogle Scholar
  151. Michaelis, L., u. H. Davidsohn: Die Wirkung der Wasserstoffionen auf das Invertin. Biochem. Z. 35, 386–412 (1911).Google Scholar
  152. Michaelis, L., u. M. L. Menten: Die Kinetik der Invertin Wirkung. Biochem. Z. 49, 333–369 (1913).Google Scholar
  153. Mittasch, A.: Katalyse und Determinismus. Erg. Enzymforsch. 7, 377–417 (1938).Google Scholar
  154. Møller, K. M., and D. M. Prescott: Observations on the cytochromes of Amoeba proteus, Chaos chaos and Tetrahymena geleii. Exper. Cell Res. 9, 375–377 (1955).CrossRefGoogle Scholar
  155. Moelwyn-Hughes, E. A.: Physical chemistry and chemical kinetics of enzymes. In J. B. Sumner u. K. Myrbäck, The enzymes, Bd. 1, Teil 1, S. 28. 1950.Google Scholar
  156. Monné, L.: Functioning of the cytoplasm. Adv. Enzymol. 8, 1–69 (1948).Google Scholar
  157. On the induced formation of chromosomelike struktures within the cytoplasm of mature sea urchin eggs. Ark. Zool. (Stockh.) 42a, 1–11 (1949).Google Scholar
  158. Monod, J., and M. Cohn: La biosynthèse induite des enzymes. Adv. Enzymol. 13, 67–116 (1952).Google Scholar
  159. Müller, A. F., u. F. Leuthardt: Oxydative Phosphorylierung und Citrullinsynthese in den Lebermitochondrien. Helvet. chim. Acta 32, 2349–2356 (1949).CrossRefGoogle Scholar
  160. Myrbäck, K.: Co-Zymase. Erg. Enzymforsch. 2, 139–168 (1933).Google Scholar
  161. Zur Wirkungsweise der Hydrolasen. Acta chem. scand. (Copenh.) 1, 142–148 (1947).Google Scholar
  162. Myrbäck, K., and E. Willstaedt: Studies on yeast invertase (saccharase). Localization of the enzyme in the cell and its liberation. Ark. Kemi (Stockh.) 8, 367–374 (1955).Google Scholar
  163. Nachmansohn, D., and I. B. Wilson: The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. 12, 259–339 (1951).Google Scholar
  164. Neilands, J. B.: Studies on lactic dehydrogenase of heart. I. Purity, kinetics and equilibria. J. of Biol. Chem. 199, 373–381 (1952).Google Scholar
  165. Newcomer, E. H.: Mitochondria in Plants. Bot. Rev. 17, 53–89 (1951).CrossRefGoogle Scholar
  166. Nichol, C. A., and A. D. Welch: Synthesis of citrovorum factor from folic acid by liver slices; augmentation by ascorbic acid. Proc. Soc. Exper. Biol. a. Med. 74, 52–55 (1950).Google Scholar
  167. Northrop, J. H.: Crystalline pepsin. I. Isolation and tests of purity. J. Gen. Physiol. 13, 739–766 (1929 bis 1930a).CrossRefGoogle Scholar
  168. cystalline pepsin. II. General properties and experimental methods. J. Gen. Physiol. 13, 767–791 (1929/30b).Google Scholar
  169. Northrop, J. H., and M. Kunitz: Isolation of protein crystals possessing tryptic activity. Science (Lancaster, Pa.) 73, 262–263 (1931).Google Scholar
  170. Nygaard, A. P.: Factors involved in the enzymatic reduction of cytochrome c. J. of Biol. Chem. 204, 655–663 (1953).Google Scholar
  171. Nygaard, A. P., and J. B. Sumner: The effect of lecithinase A on the succinoxydase system. J. of Biol. Chem. 200, 723–729 (1953).Google Scholar
  172. Paigen, K.: The occurence of several biochemically distinct types of mitochondria in rat liver. J. of Biol. Chem. 206, 945–957 (1954).Google Scholar
  173. Palade, G. E.: The fine structure of mitochondria. Anat. rec. 114, 427–452 (1952).PubMedCrossRefGoogle Scholar
  174. An electron microscope study of the mitochondrial structure. J. Histochem. a. Cytochem. 1, 188–211 (1953).Google Scholar
  175. A small particulate component of the cytoplasm. J. Biophys. a. Biochem. Cytology 1, 59–68 (1955).Google Scholar
  176. Pasteur, L.: Mémoire sur la fermentation alcoolique. Ann. Chim. Physique (3) 58, 323–426 (1860).Google Scholar
  177. Patterson, E. K., M. E. Dackerman and J. Schultz: Peptidase increase accompanying growth of the larval salivary gland of Drosophila melanogaster. J. Gen. Physiol. 32, 623–645 (1949).PubMedCrossRefGoogle Scholar
  178. Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle cell anemia, a molecular disease. Science (Lancaster, Pa.) 110, 543–548 (1949).Google Scholar
  179. Porter, V. S., N. P. Deming, R. C. Wright and E. M. Scott: Effects of freezing on particulate enzymes of rat liver. J. of Biol. Chem. 205, 883–891 (1953).Google Scholar
  180. Potter, V. R., and C. A. Elvehjem: A modified method for the study of tissue oxidations. J. of Biol. Chem. 114, 495–504 (1936).Google Scholar
  181. Potter, V. R., R. O. Recknagel and R. B. Hurlbert: Intracellular enzyme distribution; interpretations and significance. Federat. Proc. 10, 646–653 (1951).Google Scholar
  182. Pullman, M. E.: Structure of reduced pyridine nucleotides. Federat. Proc. 12, 255 (1955).Google Scholar
  183. Raaflaub, J.: Die Korrelation zwischen Struktur und Aktivität von isolierten Leberzellmitochondrien. Helvet. physiol. Acta 10, C22–C24 (1952).Google Scholar
  184. Die Schwellung isolierter Leberzellmitochondrien und ihre physikalisch-chemische Beeinflußbarkeit. Helvet. physiol. Acta 11, 142–156 (1953a).Google Scholar
  185. Über den Wirkungsmechanismus von Adenosintriphosphat (ATP) als Cofaktor isolierter Mitochondrien. Helvet. physiol. Acta 11, 157–165 (1953b).Google Scholar
  186. Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010–1011 (1953).CrossRefGoogle Scholar
  187. Reed, L. J., and B. G. de Busk: Lipothiamide and its relation to a thiamin coenzyme required for oxidative decarboxylation of α-keto acids. J. Amer. Chem. Soc. 74, 3457 (1952).CrossRefGoogle Scholar
  188. Lipothiamide pyrophosphate: Coenzyme for oxidative decarboxylation of α-keto acids. J. Amer. Chem. Soc. 74, 3964α3965 (1952).Google Scholar
  189. Lipoic acid conjugase. J. Amer. Chem. Soc. 74, 4727α4728 (1952).Google Scholar
  190. Mechanism of enzymatic oxidative decarboxylation of pyruvate. J. Amer. Chem. Soc. 75, 1261α1262 (1953).Google Scholar
  191. Reed, L. J., B. G. de Busk, I. C. Gunsalus and C. S. Hornberger- jr.: Crystalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase. Science (Lancaster, Pa.) 114, 93–94 (1951).Google Scholar
  192. Reed, L. J., B. G. de Busk, I. C. Gunsalus and G. H. F. Schnakenberg: Chemical nature of a-lipoid acid. J. Amer. Chem. Soc. 73, 5920 (1951).CrossRefGoogle Scholar
  193. Rothen, A.: On the mechanism of enzymatic activity. J. of Biol. Chem. 163, 345–346 (1946).Google Scholar
  194. Immunological reactions between films of antigen and antibody molecules. J. of Biol. Chem. 168, 75–97 (1947).Google Scholar
  195. Rothstein, A., R. Meier and L. Hurwitz: The relationship of the cell surface to metabolism. V. The role of uranium-complexing loci of yeast in metabolism. J. Cellul. a. Comp. Physiol. 37, 57–81 (1951).CrossRefGoogle Scholar
  196. Rubinstein, D., and O. F. Denstedt: The metabolism of the erythrocyte. III. The tricarboxylic acid cycle in the avian erythrocyte. J. of Biol. Chem. 204, 623–637 (1953).Google Scholar
  197. Cytochrome oxydase activity of cell nuclei. Canad. J. Biochem. a. Physiol. 32, 548–552 (1954).Google Scholar
  198. Seaman, G. R.: Localization of acetylcholinesterase activity in the Protozoan, Tetrahymena geleii S. Proc. Soc. Exper. Biol. a. Med. 76, 169–170 (1951).Google Scholar
  199. Sizer, I. W.: Temperature activation of the urease-urea system using crude and crystalline urease. J. Gen. Physiol. 22, 719–741 (1939).PubMedCrossRefGoogle Scholar
  200. Sjöstrand, F. S., und V. Hanzon: Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Exper. Cell Res. 7, 393–414 (1954).CrossRefGoogle Scholar
  201. Slater, E. C.: Structurally-bound enzymes. In Biologie und Wirkung der Enzyme. 4. Kolloquium der Ges. für physiol. Chem. Mosbach. Berlin-Göttingen-Heidelberg 1953.Google Scholar
  202. Slater, E. C., and W. D. Bonner jr.: Effect of fluoride on the succinic oxidase system. Biochemic. J. 52, 185–196 (1952).Google Scholar
  203. Slater, E. C., and K. W. Cleland: The effect of tonicity of the medium on the respiratory and phosphorylative activity of heart muscle sarcosomes. Biochemie. J. 53, 557–567 (1953).Google Scholar
  204. Slautterback, D. B.: Elektron microscopic studies of small cytoplasmic particles (microsomes). Exper. Cell Res. 5, 173–186 (1953).CrossRefGoogle Scholar
  205. Smellie, R. M. S., W. M. Mc Indoe, R. Logan, J. N. Davidson and I. M. Dawson: Phosphorus compounds in the cell. 4. The incorporation of radioactive phosphorus into liver cell fractions. Biochemie. J. 54, 280–286 (1953).Google Scholar
  206. Snell, E. E., G. M. Brown, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. Mc Glohon and O. D. Bird: Chemical nature and synthesis of the Lactobacillus bulgaricus factor. J. Amer. Chem. Soc. 72, 5349–5350 (1950).CrossRefGoogle Scholar
  207. Sørensen, S. P. L.: Enzymstudien. II. Mitt. Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem. Z. 21, 131–200, 201–304 (1909).Google Scholar
  208. Sumner, J. B.: The isolation and crystallisation of the enzyme urease. J. of Biol. Chem. 69, 435–441 (1926).Google Scholar
  209. Crystalline urease. Erg. Enzymforsch. 1, 295–301 (1932).Google Scholar
  210. Sumner, J. B., and A. L. Dounce: Crystalline catalase. J. of Biol. Chem. 121, 417–424 (1937).Google Scholar
  211. Schneider, W. C.: Intracellular distribution of enzymes. III. The oxidation of octanoic acid by rat liver fractions. J. of Biol. Chem. 176, 259–266 (1948).Google Scholar
  212. Schneider, W. C. and G. H. Hogeboom: Intracellular distribution of enzymes. X. Desoxyribonuclease and ribonuclease. J. of Biol. Chem. 198, 155–163 (1952).Google Scholar
  213. Schwann, Th.: Vorläufige Mittheilung betreffend Versuche über die Weingährung und Fäulnisz. Ann. Physik 41, 184–193 (1837).Google Scholar
  214. Stearn, A. E.: The theory of absolute reaction rates applied to enzyme catalysis. Erg. Enzymforsch. 7, 1–27 (1938).Google Scholar
  215. Kinetics of biological reactions with special reference to enzymic processes. Adv. Enzymol. 9, 25–74 (1949).Google Scholar
  216. Stern, K. G.: The constitution of the prosthetic group of catalase. J. of Biol. Chem. 112, 661–669 (1935 bis 1936).Google Scholar
  217. Theorell, H.: Reines Cytochrom c. Biochem. Z. 279, 463–464 (1935).Google Scholar
  218. Reines Cytochrom c. II. Mitt. Darstellung, Eigenschaften, Ionenbeweglichkeit, Diffusion und Absorptionsspektrum des Cytochrom c. Biochem. Z. 285, 207–218 (1936).Google Scholar
  219. Reversible Spaltung einer Peroxydase. Ark. Kern., Mineral. Geol., Ser. B 14, Nr 20, 1–3 (1940).Google Scholar
  220. Theorell, H., u. B. Chance: Studies on liver alcohol dehydrogenase. II. The Kinetics of the compound of horse liver alcohol dehydrogenase and reduced diphosphopyridine nucleotide. Acta chem. scand (Copenh.) 5, 1127–1144 (1951).CrossRefGoogle Scholar
  221. Tulpule, P. G., and V. N. Patwardhan: The effect of fat and pyridoxine deficiencies on rat liver dehydrogenases. Arch, of Biochem. 39, 450–456 (1952).CrossRefGoogle Scholar
  222. Urbani, E.: Gli enzimi proteolitici nella cellula e nell’embrione. Experientia (Basel) 9, 209–218 (1955).CrossRefGoogle Scholar
  223. Warburg, O.: Chemische Konstitution von Fermenten. Erg. Enzymforsch. 7, 210–245 (1938).Google Scholar
  224. Über die Wirkungsgruppen der oxydierenden und reduzierenden Fermente. Naturwiss. 40, 493–496 (1953).Google Scholar
  225. Warburg, O., u. W. Christian: Co-Fermentprobleme. Biochem. Z. 274, 112–116 (1934).Google Scholar
  226. Co-Fermentprobleme. Biochem. Z. 275, 112–113 (1935a).Google Scholar
  227. Co-Fermentprobleme. Biochem. Z. 275, 464 (1935b).Google Scholar
  228. Zerstörung des Wasserstoff übertragenden Co-Ferments durch ultraviolettes Licht. Biochem. Z. 282, 221–223 (1935).Google Scholar
  229. Gärungs-Co-Ferment. Biochem. Z. 285, 156–158 (1936a).Google Scholar
  230. Optischer Nachweis der Hydrierung und Dehydrierung des Pyridins im Gärungs-Co-Ferment. Biochem. Z. 286, 81–82 (1936b).Google Scholar
  231. Pyridin, der Wasserstoff übertragende Bestandteil von Gärungsfermenten. (Pyridin-Nucleotide.) Biochem. Z. 287, 291–328 (1936c).Google Scholar
  232. Isolierung und Kristallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303, 40–68 (1939).Google Scholar
  233. Warburg, O., W. Christian u. A. Griese: Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282, 157–205 (1935).Google Scholar
  234. Warburg, O., u. E. Negelein: Über die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem. Z. 202, 202–228 (1928).Google Scholar
  235. Waygood, E. R., and K. A. Clendenning: Intracellular localization and distribution of carbonic anhydrase in plants. Science (Lancaster, Pa.) 113, 177–179 (1951).Google Scholar
  236. Williams jr., J. N.: Inhibition of coenzyme I-requiring enzyme by adenine and adenyl metabolities in vitro. J. of Biol. Chem. 195, 629–635 (1952).Google Scholar
  237. Willstätter, R., u. M. Rohdewald: Zur enzymatischen Methodik. Z. physiol. Chem. 229, 241–268 (1934).CrossRefGoogle Scholar
  238. Wilson, I. B.: Mechanism of enzymic hydrolysis. I. Role of the acidic group in the esteratic site of acetylcholinesterase. Biochim. et Biophysica Acta 7, 466–470 (1951a).CrossRefGoogle Scholar
  239. Mechanism of hydrolysis. II. New evidence for an acylated enzyme as intermediate. Biochim. et Biophysica Acta 7, 520–525 (1951b).Google Scholar
  240. Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. of Biol. Chem. 190, 111–117 (1951b).Google Scholar
  241. Wilson, I.B., and F. Bergmann: Studies on Cholinesterase. VII. The active surface of acetylcholine esterase derived from effects of pH on inhibitors. J. of Biol. Chem. 185, 479–489 (1950).Google Scholar
  242. Wilson, P. W.: Kinetics and mechanisms of enzyme reactions. In Lardy, Respiratory enzymes. Minneapolis 1950.Google Scholar
  243. Winzler, R. J.: A comperative study of the effects of cyanide, acide and carbon monoxide on the respiration of bakers yeast. J. Cellul. a. Comp. Physiol. 21, 229–252 (1943).CrossRefGoogle Scholar
  244. Wolken, J. J., and G. E. Palade: An electron microscope study of two flagellates. Chloroplast structure and variation. Ann. New York Acad. Sci. 56, 873–889 (1953).CrossRefGoogle Scholar
  245. Zeile, K., u. H. Hellström: Über die aktive Gruppe der Leberkatalase. Hoppe-Seylers Z. 192, 171–192 (1930).CrossRefGoogle Scholar
  246. Zeller, E. A.: Allgemeine Physiologie und Pathologie der Enzyme. Handbuch der allgemeinen Pathologie, Bd. 2. Heidelberg: Springer 1955.Google Scholar
  247. Zeller, E. A., u. A. Bissegger: Über die Cholinesterase des Gehirns und der Erythrocytes Helvet. chim. Acta 26, 1619–1630 (1943).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • Franz Duspiva

There are no affiliations available

Personalised recommendations