The loss of substances by cells and tissues (salt glands)

  • R. J. Helder
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)


Undoubtedly the loss of substances by individual cells or tissues is an important aspect of the physiology of the plant. For instance, if we study the uptake of salts by intact plants and their subsequent distribution within the plant, we meet a good many processes which involve either a passive leakage or an active secretion. Exchange, i.e. a coupled binding and release of ions, is often the very first step in ion absorption. Accumulation of the ions in the vacuoles requires an active secretion mechanism which brings ions from the cytoplasm into the vacuoles (Arisz 1948). The transfer of ions across the root tissue, from the medium to the xylem vessels also involves either an alternating absorption and release by the individual cells or, if we accept the symplasm theory, at least one absorption process and another process by which ions are released from the stele tissue to the xylem vessels. Moreover, we know that, once the salts have become distributed among the different parts of the plant, redistribution may take place, which again involves a loss of ions by the different plant parts and which may lead to a loss from the roots back to the medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achromeiko, A. J.: Über die Ausscheidung mineralischer Stoffe durch Pflanzenwurzeln. Z. Pflanzenernähr., Düngung u. Bodenkde 42, 156–186 (1936).CrossRefGoogle Scholar
  2. Andel, O. M. van: Determinations of the osmotic value of exudation sap by means of the thermo-electric method of Baldes and Johnson. Proc. Kon. Ned. Akad. Wetensch., Ser. C 55, 40–48 (1952).Google Scholar
  3. Andel, O. M. van, W. H. Arisz and R. J. Helder: Influence of light and sugar on growth and salt uptake by maize. Proc. Kon. Ned. Akad. Wetensch. 53, 159–171 (1950).Google Scholar
  4. Arens, K.: Die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 80, 248–300 (1934).Google Scholar
  5. Arisz, W. H.: Het actief en passief opnemen van Stoffen door Vallisneria. Versl. Ned. Akad. Wetensch. 52, 639–645 (1943).Google Scholar
  6. Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. III. Discussion of the transport and the uptake. Vacuole secretion theory. Proc. Kon. Ned. Akad. Wetensch. 51, 25–33 (1948).Google Scholar
  7. Significance of the symplasm theory for the uptake of substances into the cells. In the press 1955.Google Scholar
  8. Arisz, W. H., I. J. Camphuis, H. Heikens and A. J. van Tooren: The secretion of the salt glands of Limonium latifolium. In the press 1955.Google Scholar
  9. Asprey, G. F.: On the relationship between exosmosis and salt absorption by potato tuber tissue previously treated with various salt solutions. Protoplasma 24, 497–504 (1935).CrossRefGoogle Scholar
  10. Brooks, S. C.: Studies on exosmosis. Amer. J. Bot. 3, 483–492 (1916).CrossRefGoogle Scholar
  11. Brown, R., A. W. Johnson, E. Robinson and A. R. Todd: The stimulant involved in the germination of Striga hermonthica. Proc. Roy. Soc. Lond., Ser. B 136, 1–12 (1949).CrossRefGoogle Scholar
  12. Brown, R., and E. Robinson: The effect of d-xvloketose and certain root exudates in extension growth. Proc. Roy. Soc. Lond., Ser. B 136, 577–591 (1949).CrossRefGoogle Scholar
  13. Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617–635 (1953).CrossRefGoogle Scholar
  14. Christiansen, G. S.: The metabolism of stem tissue during growth and its inhibition. V. Nature and significance of the exudate. Arch. of Biochem. 29, 357–368 (1950).Google Scholar
  15. Conway, E. J.: Some aspects of ion transport through membranes. Symposia Soc. Exper. Biol. 8, 297–324 (1954).Google Scholar
  16. Conway, E. J., H. Ryan and E. Carton: Active transport of sodium ions from yeast cell. Biochemie. J. 58, 158–167 (1954).Google Scholar
  17. Czapek, F.: Versuche über Exosmose aus Pflanzenzellen. Ber. dtsch. bot. Ges. 28, 159–169 (1910).Google Scholar
  18. Über die Oberflächenspannung der Plasmahaut von Pflanzenzellen. Ber. dtsch. bot. Ges. 28, 480–487 (1910).Google Scholar
  19. Über eine Methode zur direkten Bestimmung der Oberflächenspannung der Plasmahaut von Pflanzenzellen. Jena 1910.Google Scholar
  20. Davis, R., J. P. Folkes, E. F. Gale and L. C. Bigger: The assimilation of aminoacids by micro-organisms. 16. Changes in sodium and potassium accompanying the accumulation of glutamic acid or lysine by bacteria and yeast. Biochemic. J. 54, 430–437 (1953).Google Scholar
  21. Dean, R. B.: Biol. Symp. 3, 331 (1941).Google Scholar
  22. Engel, H.: Das Verhalten der Blätter bei Benetzung mit Wasser. Jb. wiss. Bot. 88, 816–861 (1939).Google Scholar
  23. Fitting, H.: Die Wasserversorgung und die osmotischen Druckverhältnisse der Wüstenpflanzen. Z. Bot. 3, 209–275 (1911).Google Scholar
  24. Gale, E. F.: The assimilation of amino-acids by bacteria. 1. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. Gen. Microbiol. 1, 53–76 (1947).PubMedGoogle Scholar
  25. Hansteen-Cranner, B.: Beiträge zur Biochemie und Physiologie der Zellwand und der plasmatischen Grenzschichten. Ber. dtsch. bot. Ges. 37, 380–391 (1919).Google Scholar
  26. Harris, E. J.: Linkage of sodium- and potassium-active transport in human erythrocytes. Symposia Soc. Exper. Biol. 8, 228–241 (1954).Google Scholar
  27. Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. néerl. 1, 361–434 (1952).Google Scholar
  28. Hodgkin, A. L., and R. D. Keynes: Movements of cations during recovery in nerve. Symposia Soc. Exper. Biol. 8, 423–437 (1954).Google Scholar
  29. Hope, A. B., and P. G. Stevens: Electrical potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res. B 5, 335–343 (1952).Google Scholar
  30. Iljin, W. S.: Die Durchlässigkeit des Protoplasmas, ihre quantitative Bestimmung und ihre Beeinflussung durch Salze und durch die Wasserstoffionenkonzentration. Protoplasma 3, 558–602 (1928).CrossRefGoogle Scholar
  31. Ingold, C. T.: On the effect of previous treatment with salt solutions on the subsequent outward diffusion of electrolytes from plant tissue. Ann. of Bot. 45, 709–716 (1931).Google Scholar
  32. Kisch, B.: Über die Oberflächenspannung der lebenden Plasmahaut bei Hefe und Schimmelpilzen. Biochem. Z. 40, 152–188 (1912).Google Scholar
  33. Koltzoff, N. K: Zur Frage der Zellgestalt. Anat. Anz. 41, 183–207 (1912).Google Scholar
  34. Lausberg, T.: Quantitative Untersuchungen über die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 81, 769–806 (1935).Google Scholar
  35. Leclerc, J. A., and J. F. Breazeale: Plant food removed from growing plants by rain or dew. U.S. Agric. Dept. Yearbook 1908, 389.Google Scholar
  36. Lepeschkin, W. W.: Untersuchungen über die Ausscheidungen wässeriger Lösungen durch die Pflanzen. Mem. Acad. St. Petersburg 1904.Google Scholar
  37. Lundegårdh, H., u. G. Stenlld: On the exudation of nucleotides and flavanone from living roots. Ark. Bot. (Stockh.) Ser. A 31, 1–27 (1944).Google Scholar
  38. Luttkus, K., u. R. Bötticher: Über die Ausscheidung von Aschenstoffen durch die Wurzeln. I. Planta (Berl.) 29, 325–340 (1939).CrossRefGoogle Scholar
  39. Matzels, M.: Active cation transport in erythrocytes. Symposia Soc. Exper. Biol. 8, 202–227 (1954).Google Scholar
  40. Maury, M. P.: Étude sur l’organisation et la distribution géographique des Plombaginacëes. Ann. des Sci. natur., Sér. VII 4, 1–134 (1886).Google Scholar
  41. Maximow, N. A.: Kurzes Lehrbuch der Pflanzenphysiologie. Berlin: 1951 Kultur u. Fortschritt.Google Scholar
  42. Mes, M. G.: Excretion (recretion) of phosphorus and other mineral elements under the influence of rain. S. Afric. J. Sci. 50, 167–172 (1954).Google Scholar
  43. Mettenius, G.: Filices horti botanici Lipsiensis, 10. 1856.Google Scholar
  44. Najjar, V. A., and E. F. Gale: The assimilation of amino-acids by bacteria. IX. The passage of lysine across the cell wall of Streptococcus faecalis. Biochemic. J. 46, 91–95 (1950).Google Scholar
  45. Ruhland, W.: Untersuchungen über die Hautdrüsen der Plumbaginaceen. Ein Beitrag zur Biologie der Halophyten. Jb. wiss. Bot. 55, 409–498 (1915).Google Scholar
  46. Schtscherback, J.: Über die Salzausscheidung durch die Blätter von Statice Gmelini. (Vorläufige Mitteüung.) Ber. dtsch. bot. Ges. 28, 30–34 (1910).Google Scholar
  47. Scott, G., and H. R. Hayward: The influence of iodoacetate on the sodium and potassium content of Ulva lactuca and the prevention of its influence by light. Science (Lancaster, Pa.) 117, 719 (1953).Google Scholar
  48. Evidence for the presence of separate mechanisms regulating potassium and sodium distribution in Ulva lactuca. J. Gen. Physiol. 37, 601–620 (1954).Google Scholar
  49. Skelding, A. D., and J. Winterbotham: The structure and development of the hydathodes of Spartina Townsendii Groves. New Phytologist 38, 69–79 (1939).CrossRefGoogle Scholar
  50. Steinbach, H. B.: The regulation of sodium and potassium in muscle fibres. Symposia Soc. Exper. Biol. 8, 438–452 (1954).Google Scholar
  51. Stenlid, G.: The effect of 2,4-dinitrophenol upon oxygen consumption and glucose uptake in young wheat roots. Physiol. Plantarum (Copenh.) 2, 350–355 (1949).CrossRefGoogle Scholar
  52. Stiles, W.: The exosmosis of dissolved substance from storage tissue into water. Protoplasma 2, 577–601 (1927).CrossRefGoogle Scholar
  53. Stiles, W., and I. Jørgensen: Studies in permeability. I. The exosmosis of electrolytes as a criterion of antagonistic ion-action. Ann. of Bot. 29, 349–367 (1915).Google Scholar
  54. Studies in permeability. IV. The action of various organic substances on the permeability of the plant cell, and its bearing on Czapek’s theory of the plasma membrane. Ann. of Bot. 31, 47–76 (1917).Google Scholar
  55. Sutherland, G. H., and A. Eastwood: The physiological anatomy of Spartina Townsendii. Ann. of Bot. 30, 333–351 (1916).Google Scholar
  56. Tamm, C. O.: Removal of plant nutrients from tree crowns by rain. Physiol. Plantarum (Copenh.) 4, 184–188 (1951).CrossRefGoogle Scholar
  57. Thoday, D.: Some observations on the behaviour of turgescent tissue in solutions of cane sugar and of certain toxic substances. New Phytologist 17, 57–68 (1918).CrossRefGoogle Scholar
  58. True, R. H., and H. H. Bartlett: Absorption and excretion of salts in roots as influenced by concentration and composition of culture solutions. U.S. Dept. Agric. Bur. Plant Ind., Bull. 231, 1912.Google Scholar
  59. Ussing, H.: Active transport of inorganic ions. Symposia Soc. Exper. Biol. 8, 407–422 (1954).Google Scholar
  60. Vernon, H. M.: Die Rolle der Oberflächenspannung und der Lipoide für die lebenden Zellen. Biochem. Z. 51, 1–25 (1913).Google Scholar
  61. Volkens, G.: Die Kalkdrüsen der Plumbagineen. Ber. dtsch. bot. Ges. 2, 334–342 (1884).Google Scholar
  62. Vuillemin, M. P.: Recherches sur quelques glandes épidermiques. Ann. des Sci. natur., Sér. VII, 5, 152–177 (1877).Google Scholar
  63. Wächter, W.: Untersuchungen über den Austritt von Zucker aus den Zellen der Speicherorgane von Allium cepa und Beta vulgaris. Pringsh. Jb. wiss. Bot. 41, 165 (1905).Google Scholar
  64. Wilson, J.: The mucilage- and other glands of the Plumbagineae. Ann. of Bot. 4, 231–258 (1889–1891).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • R. J. Helder

There are no affiliations available

Personalised recommendations