Advertisement

Uptake and ionic environment (including external pH)

  • Emanuel Epstein
Chapter
  • 57 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)

Abstract

The preceding sections (IV A–E) have demonstrated that plant cells take up a variety of substances, and that there is a number of mechanisms whereby solutes may enter cells and tissues. A given type of solute may be capable of entering by more than one of the possible mechanisms. For example, inorganic ions may reach a certain fraction of the total volume of the cells or tissue by simple diffusion. Simultaneously, cation exchange may take place along electrochemical potential gradients because of the presence of immobile anions acting as cation exchange surfaces, resulting in the establishment of Donnan equilibria. And concomitantly, ions may be actively (non-osmotically) transported and concentrated within the cells. A given factor in the ionic environment will not be expected to affect uptake by these diverse mechanisms in parallel ways. In some instances, a certain factor in the ionic environment may increase uptake of some ion by one of these mechanisms, and greatly reduce the uptake of the same ion by another mechanism. In studies on the effects of the ionic environment on absorption it is therefore mandatory to discriminate between the various mechanisms of uptake, and to identify the particular mechanism through which a given ionic feature of the medium affects the absorption of the substance under investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alberda, T.: The influence of some external factors on growth and phosphate uptake of maize plants of different salt conditions. Rec. Trav. bot. néerl. 41, 541–601 (1949).Google Scholar
  2. Arisz, W. H.: Transport of substances through the tentacles of leaves of Drosera capensis L. Nature (Lond.) 170, 932–933 (1952).CrossRefGoogle Scholar
  3. Arnon, D. I., W. E. Fratzke and C. M. Johnson: Hydrogen ion concentration in relation to absorption of inorganic nutrients by higher plants. Plant Physiol. 17, 515–524 (1942).PubMedCrossRefGoogle Scholar
  4. Arnon, D. I., and C. M. Johnson: Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol. 17, 525–539 (1942).PubMedCrossRefGoogle Scholar
  5. Aslander, A.: Studies on antagonism in acid nutrient solutions. Sv. bot. Tidskr. 25, 77–107 (1931).Google Scholar
  6. Asprey, G. F.: Studies on antagonism. I. The effect of the presence of salts of monovalent, divalent, and trivalent cations on the intake of calcium and ammonium ions by potato tuber tissue. Proc. Roy. Soc. Lond., Ser. B 112, 451–472 (1933).CrossRefGoogle Scholar
  7. Beevers, H. E., P. Goldschmidt and H. Koffler: The use of esters of biologically active weak acids in overcoming permeability difficulties. Arch, of Biochem. a. Biophysics 39, 236–238 (1952).CrossRefGoogle Scholar
  8. Brian, B.C., and E.K. Rideal: On the action of plant growth regulators. Biochem. et Biophysica Acta 9, 1–18 (1952).CrossRefGoogle Scholar
  9. Brown, R.: Protoplast surface enzymes and absorption of sugar. Internat. Rev. Cytology 1, 107–118 (1952).CrossRefGoogle Scholar
  10. Burström, H.: Studies on growth and metabolism of roots. X. Investigations of the calcium effect. Physiol. Plantarum (Copenh.) 7, 332–342 (1954).CrossRefGoogle Scholar
  11. Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617–635 (1953).CrossRefGoogle Scholar
  12. Collander, R.: Permeabilitätsstudien an Characeen. III. Die Aufnahme und Abgabe von Kationen. Protoplasma 33, 215–257 (1939).CrossRefGoogle Scholar
  13. Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).Google Scholar
  14. Eddy, A. A., T. C. N. Carroll, C. J. Danby and C. Hinshelwood: Alkali metal ions in the metabolism of Bad. lactis aerogenes. I. Experiments on the uptake of radioactive potassium, rubidium and phosphorus. Proc. Roy. Soc. Lond., Ser. B 138, 219–228 (1951).CrossRefGoogle Scholar
  15. Epstein, E.: Mechanism of ion absorption by roots. Nature (Lond.) 171, 83–84 (1953).CrossRefGoogle Scholar
  16. Passive permeation and active transport of ions in plant roots. Plant Physiol. 30, 529 bis 535 (1955).Google Scholar
  17. Epstein, E., and C. E. Hägen: A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474 (1952).PubMedCrossRefGoogle Scholar
  18. Epstein, E., and J. E. Leggett: The absorption of alkaline earth cations by barley roots: kinetics and mechanism. Amer. J. Bot. 41, 785–791 (1954).CrossRefGoogle Scholar
  19. Fawzy, H., R. Overstreet and L. Jacobson: The influence of hydrogen ion concentration on cation absorption by barley roots. Plant Physiol. 29, 234–237 (1954).PubMedCrossRefGoogle Scholar
  20. Gauch, H. G., and W. M. Dugger jr.: The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466 (1953).PubMedCrossRefGoogle Scholar
  21. Goldberg, E. D., T. J. Waiter and A. Whisenand: Phosphate utilization by diatoms. Biol. Bull. 101, 274–284 (1951).CrossRefGoogle Scholar
  22. Hägen, C. E., and H.T. Hopkins: Ionic species in orthophosphate absorption by barley roots. Plant Physiol. 30, 193–199 (1955).PubMedCrossRefGoogle Scholar
  23. Hassan, M.N., and R. Overstreet: Elongation of seedlings as a biological test of alkali soils. I. Effects of ions on elongation. Soil Sci. 73, 315–326 (1952).CrossRefGoogle Scholar
  24. Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. néerl. 1, 361–434 (1952).Google Scholar
  25. Hoagland, D. R.: Salt accumulation by plant cells, with special reference to metabolism and experiments on barley roots. Cold Spring Harbor Symp. Quant. Biol. 8, 181–194 (1940).CrossRefGoogle Scholar
  26. Hoagland, D. R., and T. C. Broyer: Hydrogen-ion effects and the accumulation of salt by barley roots as influenced by metabolism. Amer. J. Bot. 27, 173–185 (1940).CrossRefGoogle Scholar
  27. Hoagland, D. R., and A. R. Davis: Composition of cell-sap of the plant in relation to absorption of ions. J. Gen. Physiol. 5, 629–646 (1923).PubMedCrossRefGoogle Scholar
  28. Hoagland, D. R., A. R. Davis and P. L. Hibbard: The influence of one ion on the accumulation of another by plant cells with special reference to experiments with Nitella. Plant Physiol. 3, 473–486 (1928).PubMedCrossRefGoogle Scholar
  29. Honert, T. H. van den: Over eigenschappen van plantenwortels, welke een rol spelen bij de opname van voedingszouten. Natuurk. Tijdschr. v. Nederl.-Ind. 97, 150–162 (1937).Google Scholar
  30. Hope, A. B.: Salt uptake by root tissue cytoplasm: The relation between uptake and external concentration. Austral. J. Biol. Sci. 6, 396–409 (1953).Google Scholar
  31. Hope, A.B., and P.G.Stevens: Electric potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res. 5, 335–343 (1952).Google Scholar
  32. Jacobson, L., and L. Ordin: Organic acid metabolism and ion absorption in roots. Plant Physiol. 29, 70–75 (1954).PubMedCrossRefGoogle Scholar
  33. Jacques, A. G.: The kinetics of penetration. X. Guanidine. Proc. Nat. Acad. Sci. U.S. 21, 488–492 (1935).CrossRefGoogle Scholar
  34. Jacques, A. G., and W. J. V. Osterhout: The kinetics of penetration. XI. Entrance of potassium into Nitella. J. Gen. Physiol. 18, 967–985 (1935).PubMedCrossRefGoogle Scholar
  35. Knauss, H. J., and J. W. Porter: The absorption of inorganic ions by Chlorella pyrenoidosa. Plant Physiol. 29, 229–234 (1954).PubMedCrossRefGoogle Scholar
  36. Kylin, A.: The uptake and metabolism of sulphate by deseeded wheat plants. Physiol. Plantarum (Copenh.) 6, 775–795 (1953).CrossRefGoogle Scholar
  37. Lansing, A. I., and T. B. Rosenthal: The relation between ribonucleic acid and ionic transport across the cell surface. J. Cellul. a. Comp. Physiol. 40, 337–345 (1952).CrossRefGoogle Scholar
  38. Libbert, E. Die Wirkung der Alkali- und Erdalkaliionen auf das Wurzelwachstum unter besonderer Berücksichtigung des Ionenantagonismus und semer Abhängigkeit von Milieufaktoren. Planta (Berl.) 41, 396–435 (1953).CrossRefGoogle Scholar
  39. Lineweaver, H., and D. Burk: The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56, 658–666 (1934).CrossRefGoogle Scholar
  40. Massart, L., and J. van der Stock: Antagonism between trypaflavine and cations. Nature (Lond.) 165, 852–853 (1950).CrossRefGoogle Scholar
  41. Michaelis, L., and M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913).Google Scholar
  42. Overstreet, R., T. C. Broyer, T. L. Isaacs and C. C. Delwiche: Additional studies regarding the cation absorption mechanism of plants in soil. Amer. J. Bot. 29, 227–231 (1942).CrossRefGoogle Scholar
  43. Overstreet, R., L. Jacobson and R. Handley: The effect of calcium on the absorption of potassium by barley roots. Plant Physiol. 27, 583–590 (1952).PubMedCrossRefGoogle Scholar
  44. Pearson, G. A.: Some factors influencing absorption of zinc by roots from single salt systems. Thesis (Ph. D.), University of California, Berkeley 1951.Google Scholar
  45. Reinhold, L.: The uptake of mdole-3-acetic acid by pea epicotyl segments and carrot disks. New Phytologist 53, 217–239 (1954).CrossRefGoogle Scholar
  46. Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R. J. Britten: Studies of biosynthesis in Escherichia coli. Carnegie Instn. Publ. No 607, 1955.Google Scholar
  47. Roberts, R.B., and I. Z. Roberts: Potassium metabolism in Escherichia coli. III. Interrelationship of potassium and phosphorus metabolism. J. Cellul. a. Comp. Physiol. 36, 15–39 (1950).CrossRefGoogle Scholar
  48. Roberts, R. B., I. Z. Roberts and D. B. Cowie: Potassium metabolism in Escherichia coli. II. Metabolism in the presence of carbohydrates and their metabolic derivatives. J. Cellul. a. Comp. Physiol. 34, 259–291 (1949).CrossRefGoogle Scholar
  49. Shrift, A.: Sulfur-selenium antagonism. II. Antimetabolite action of seleno-methionine on the growth of Chlorella vulgaris. Amer. J. Bot. 41, 345–352 (1954).CrossRefGoogle Scholar
  50. Small, J.: Modern aspects of pH, with special reference to plants and soils. New York: Van Nostrand Co. 1954.Google Scholar
  51. Steward, F. C.: The absorption and accumulation of solutes by living plant cells. I. Experimental conditions which determine salt absorption by storage tissue. Protoplasma 15, 29–58 (1932).CrossRefGoogle Scholar
  52. Steward, F. C., and J. C. Martin: The distribution and physiology of Valonia at the Dry Tortugas, with special reference to the problem of salt accumulation in plants. Carnegie Instn. Washington, Papers from the Tortugas Laboratory 31, 87–170 (1937).Google Scholar
  53. Steward, F. C., and C. Preston: The effect of salt concentration upon the metabolism of potato discs and the contrasted effect of potassium and calcium salts which have a common ion. Plant Physiol. 16, 85–116 (1941).PubMedCrossRefGoogle Scholar
  54. Stiles, W.: An introduction to the principles of plant physiology, 2nd ed. London: Methuen 1950.Google Scholar
  55. Stout, P. R., W. R. Meagher, G. A. Pearson and C. M. Johnson: Molybdenum nutrition of crop plants. I. The influence of phosphate and sulfate on the absorption of molybdenum from sous and solution cultures. Plant a. Sou 3, 51–87 (1951).CrossRefGoogle Scholar
  56. Street, H. E., and J. S. Lowe: The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. of Bot., N. S. 14, 307–329 (1950).Google Scholar
  57. Tanada, T.: Effect of ultraviolet radiation and calcium and their interaction on salt absorption by excised mung bean roots. Plant Physiol. 30, 221–225 (1955).PubMedCrossRefGoogle Scholar
  58. Ulrich, A.: Metabolism of nonvolatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Amer. J. Bot. 28, 526–537 (1941).CrossRefGoogle Scholar
  59. Metabolism of organic acids in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Amer. J. Bot. 29, 220–227 (1942).Google Scholar
  60. Vervelde, G. J.: The Donnan-principle in the ionic relations of plant roots. Plant a. Sou 4, 309–322 (1953).CrossRefGoogle Scholar
  61. Viets, F. G.: Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol. 19, 466–480 (1944).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • Emanuel Epstein

There are no affiliations available

Personalised recommendations