Skip to main content
  • 129 Accesses

Abstract

The preceding sections (IV A–E) have demonstrated that plant cells take up a variety of substances, and that there is a number of mechanisms whereby solutes may enter cells and tissues. A given type of solute may be capable of entering by more than one of the possible mechanisms. For example, inorganic ions may reach a certain fraction of the total volume of the cells or tissue by simple diffusion. Simultaneously, cation exchange may take place along electrochemical potential gradients because of the presence of immobile anions acting as cation exchange surfaces, resulting in the establishment of Donnan equilibria. And concomitantly, ions may be actively (non-osmotically) transported and concentrated within the cells. A given factor in the ionic environment will not be expected to affect uptake by these diverse mechanisms in parallel ways. In some instances, a certain factor in the ionic environment may increase uptake of some ion by one of these mechanisms, and greatly reduce the uptake of the same ion by another mechanism. In studies on the effects of the ionic environment on absorption it is therefore mandatory to discriminate between the various mechanisms of uptake, and to identify the particular mechanism through which a given ionic feature of the medium affects the absorption of the substance under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Alberda, T.: The influence of some external factors on growth and phosphate uptake of maize plants of different salt conditions. Rec. Trav. bot. néerl. 41, 541–601 (1949).

    CAS  Google Scholar 

  • Arisz, W. H.: Transport of substances through the tentacles of leaves of Drosera capensis L. Nature (Lond.) 170, 932–933 (1952).

    Article  CAS  Google Scholar 

  • Arnon, D. I., W. E. Fratzke and C. M. Johnson: Hydrogen ion concentration in relation to absorption of inorganic nutrients by higher plants. Plant Physiol. 17, 515–524 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Arnon, D. I., and C. M. Johnson: Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol. 17, 525–539 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Aslander, A.: Studies on antagonism in acid nutrient solutions. Sv. bot. Tidskr. 25, 77–107 (1931).

    CAS  Google Scholar 

  • Asprey, G. F.: Studies on antagonism. I. The effect of the presence of salts of monovalent, divalent, and trivalent cations on the intake of calcium and ammonium ions by potato tuber tissue. Proc. Roy. Soc. Lond., Ser. B 112, 451–472 (1933).

    Article  CAS  Google Scholar 

  • Beevers, H. E., P. Goldschmidt and H. Koffler: The use of esters of biologically active weak acids in overcoming permeability difficulties. Arch, of Biochem. a. Biophysics 39, 236–238 (1952).

    Article  CAS  Google Scholar 

  • Brian, B.C., and E.K. Rideal: On the action of plant growth regulators. Biochem. et Biophysica Acta 9, 1–18 (1952).

    Article  CAS  Google Scholar 

  • Brown, R.: Protoplast surface enzymes and absorption of sugar. Internat. Rev. Cytology 1, 107–118 (1952).

    Article  CAS  Google Scholar 

  • Burström, H.: Studies on growth and metabolism of roots. X. Investigations of the calcium effect. Physiol. Plantarum (Copenh.) 7, 332–342 (1954).

    Article  Google Scholar 

  • Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617–635 (1953).

    Article  CAS  Google Scholar 

  • Collander, R.: Permeabilitätsstudien an Characeen. III. Die Aufnahme und Abgabe von Kationen. Protoplasma 33, 215–257 (1939).

    Article  CAS  Google Scholar 

  • Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).

    Google Scholar 

  • Eddy, A. A., T. C. N. Carroll, C. J. Danby and C. Hinshelwood: Alkali metal ions in the metabolism of Bad. lactis aerogenes. I. Experiments on the uptake of radioactive potassium, rubidium and phosphorus. Proc. Roy. Soc. Lond., Ser. B 138, 219–228 (1951).

    Article  CAS  Google Scholar 

  • Epstein, E.: Mechanism of ion absorption by roots. Nature (Lond.) 171, 83–84 (1953).

    Article  CAS  Google Scholar 

  • Passive permeation and active transport of ions in plant roots. Plant Physiol. 30, 529 bis 535 (1955).

    Google Scholar 

  • Epstein, E., and C. E. Hägen: A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E., and J. E. Leggett: The absorption of alkaline earth cations by barley roots: kinetics and mechanism. Amer. J. Bot. 41, 785–791 (1954).

    Article  CAS  Google Scholar 

  • Fawzy, H., R. Overstreet and L. Jacobson: The influence of hydrogen ion concentration on cation absorption by barley roots. Plant Physiol. 29, 234–237 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Gauch, H. G., and W. M. Dugger jr.: The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, E. D., T. J. Waiter and A. Whisenand: Phosphate utilization by diatoms. Biol. Bull. 101, 274–284 (1951).

    Article  CAS  Google Scholar 

  • Hägen, C. E., and H.T. Hopkins: Ionic species in orthophosphate absorption by barley roots. Plant Physiol. 30, 193–199 (1955).

    Article  PubMed  Google Scholar 

  • Hassan, M.N., and R. Overstreet: Elongation of seedlings as a biological test of alkali soils. I. Effects of ions on elongation. Soil Sci. 73, 315–326 (1952).

    Article  CAS  Google Scholar 

  • Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. néerl. 1, 361–434 (1952).

    CAS  Google Scholar 

  • Hoagland, D. R.: Salt accumulation by plant cells, with special reference to metabolism and experiments on barley roots. Cold Spring Harbor Symp. Quant. Biol. 8, 181–194 (1940).

    Article  CAS  Google Scholar 

  • Hoagland, D. R., and T. C. Broyer: Hydrogen-ion effects and the accumulation of salt by barley roots as influenced by metabolism. Amer. J. Bot. 27, 173–185 (1940).

    Article  CAS  Google Scholar 

  • Hoagland, D. R., and A. R. Davis: Composition of cell-sap of the plant in relation to absorption of ions. J. Gen. Physiol. 5, 629–646 (1923).

    Article  PubMed  CAS  Google Scholar 

  • Hoagland, D. R., A. R. Davis and P. L. Hibbard: The influence of one ion on the accumulation of another by plant cells with special reference to experiments with Nitella. Plant Physiol. 3, 473–486 (1928).

    Article  PubMed  CAS  Google Scholar 

  • Honert, T. H. van den: Over eigenschappen van plantenwortels, welke een rol spelen bij de opname van voedingszouten. Natuurk. Tijdschr. v. Nederl.-Ind. 97, 150–162 (1937).

    Google Scholar 

  • Hope, A. B.: Salt uptake by root tissue cytoplasm: The relation between uptake and external concentration. Austral. J. Biol. Sci. 6, 396–409 (1953).

    CAS  Google Scholar 

  • Hope, A.B., and P.G.Stevens: Electric potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res. 5, 335–343 (1952).

    CAS  Google Scholar 

  • Jacobson, L., and L. Ordin: Organic acid metabolism and ion absorption in roots. Plant Physiol. 29, 70–75 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Jacques, A. G.: The kinetics of penetration. X. Guanidine. Proc. Nat. Acad. Sci. U.S. 21, 488–492 (1935).

    Article  CAS  Google Scholar 

  • Jacques, A. G., and W. J. V. Osterhout: The kinetics of penetration. XI. Entrance of potassium into Nitella. J. Gen. Physiol. 18, 967–985 (1935).

    Article  PubMed  CAS  Google Scholar 

  • Knauss, H. J., and J. W. Porter: The absorption of inorganic ions by Chlorella pyrenoidosa. Plant Physiol. 29, 229–234 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Kylin, A.: The uptake and metabolism of sulphate by deseeded wheat plants. Physiol. Plantarum (Copenh.) 6, 775–795 (1953).

    Article  CAS  Google Scholar 

  • Lansing, A. I., and T. B. Rosenthal: The relation between ribonucleic acid and ionic transport across the cell surface. J. Cellul. a. Comp. Physiol. 40, 337–345 (1952).

    Article  CAS  Google Scholar 

  • Libbert, E. Die Wirkung der Alkali- und Erdalkaliionen auf das Wurzelwachstum unter besonderer Berücksichtigung des Ionenantagonismus und semer Abhängigkeit von Milieufaktoren. Planta (Berl.) 41, 396–435 (1953).

    Article  Google Scholar 

  • Lineweaver, H., and D. Burk: The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56, 658–666 (1934).

    Article  CAS  Google Scholar 

  • Massart, L., and J. van der Stock: Antagonism between trypaflavine and cations. Nature (Lond.) 165, 852–853 (1950).

    Article  CAS  Google Scholar 

  • Michaelis, L., and M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913).

    CAS  Google Scholar 

  • Overstreet, R., T. C. Broyer, T. L. Isaacs and C. C. Delwiche: Additional studies regarding the cation absorption mechanism of plants in soil. Amer. J. Bot. 29, 227–231 (1942).

    Article  CAS  Google Scholar 

  • Overstreet, R., L. Jacobson and R. Handley: The effect of calcium on the absorption of potassium by barley roots. Plant Physiol. 27, 583–590 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Pearson, G. A.: Some factors influencing absorption of zinc by roots from single salt systems. Thesis (Ph. D.), University of California, Berkeley 1951.

    Google Scholar 

  • Reinhold, L.: The uptake of mdole-3-acetic acid by pea epicotyl segments and carrot disks. New Phytologist 53, 217–239 (1954).

    Article  Google Scholar 

  • Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R. J. Britten: Studies of biosynthesis in Escherichia coli. Carnegie Instn. Publ. No 607, 1955.

    Google Scholar 

  • Roberts, R.B., and I. Z. Roberts: Potassium metabolism in Escherichia coli. III. Interrelationship of potassium and phosphorus metabolism. J. Cellul. a. Comp. Physiol. 36, 15–39 (1950).

    Article  CAS  Google Scholar 

  • Roberts, R. B., I. Z. Roberts and D. B. Cowie: Potassium metabolism in Escherichia coli. II. Metabolism in the presence of carbohydrates and their metabolic derivatives. J. Cellul. a. Comp. Physiol. 34, 259–291 (1949).

    Article  CAS  Google Scholar 

  • Shrift, A.: Sulfur-selenium antagonism. II. Antimetabolite action of seleno-methionine on the growth of Chlorella vulgaris. Amer. J. Bot. 41, 345–352 (1954).

    Article  CAS  Google Scholar 

  • Small, J.: Modern aspects of pH, with special reference to plants and soils. New York: Van Nostrand Co. 1954.

    Google Scholar 

  • Steward, F. C.: The absorption and accumulation of solutes by living plant cells. I. Experimental conditions which determine salt absorption by storage tissue. Protoplasma 15, 29–58 (1932).

    Article  CAS  Google Scholar 

  • Steward, F. C., and J. C. Martin: The distribution and physiology of Valonia at the Dry Tortugas, with special reference to the problem of salt accumulation in plants. Carnegie Instn. Washington, Papers from the Tortugas Laboratory 31, 87–170 (1937).

    Google Scholar 

  • Steward, F. C., and C. Preston: The effect of salt concentration upon the metabolism of potato discs and the contrasted effect of potassium and calcium salts which have a common ion. Plant Physiol. 16, 85–116 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Stiles, W.: An introduction to the principles of plant physiology, 2nd ed. London: Methuen 1950.

    Google Scholar 

  • Stout, P. R., W. R. Meagher, G. A. Pearson and C. M. Johnson: Molybdenum nutrition of crop plants. I. The influence of phosphate and sulfate on the absorption of molybdenum from sous and solution cultures. Plant a. Sou 3, 51–87 (1951).

    Article  CAS  Google Scholar 

  • Street, H. E., and J. S. Lowe: The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. of Bot., N. S. 14, 307–329 (1950).

    CAS  Google Scholar 

  • Tanada, T.: Effect of ultraviolet radiation and calcium and their interaction on salt absorption by excised mung bean roots. Plant Physiol. 30, 221–225 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, A.: Metabolism of nonvolatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Amer. J. Bot. 28, 526–537 (1941).

    Article  CAS  Google Scholar 

  • Metabolism of organic acids in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Amer. J. Bot. 29, 220–227 (1942).

    Google Scholar 

  • Vervelde, G. J.: The Donnan-principle in the ionic relations of plant roots. Plant a. Sou 4, 309–322 (1953).

    Article  CAS  Google Scholar 

  • Viets, F. G.: Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol. 19, 466–480 (1944).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Epstein, E. (1956). Uptake and ionic environment (including external pH). In: Bahr, G.F., et al. Allgemeine Physiologie der Pflanzenzelle / General Physiology of the Plant Cell. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94676-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94676-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94677-6

  • Online ISBN: 978-3-642-94676-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics