Skip to main content
  • 130 Accesses

Abstract

In recent years it has become increasingly difficult to define or describe permeability with any degree of precision. In general terms permeability is a property of membranes and refers to the extent to which various substances can pass through them. In order to make comparisons of permeability it is necessary also to describe the forces causing movement across the membrane. Brooks and Brooks (1941) defined permeability as the rate of movement of a substance through a permeable layer under a given driving force. This, as they state, involves two concepts which should be distinguished. One is permeability in its narrowest sense, a property of a membrane, and the other is the driving force which causes movement across the membrane. In the simpler instances of movement by diffusion along activity gradients the driving force may be quite distinct from any property of the membrane, but where “active transport” or accumulation is involved it may be related to certain properties of the membrane itself. Teorell (1949, 1953) also distinguishes between permeability in its narrow sense as a property of the membrane, and the forces causing movement across the membrane. He reminds his readers that failure of a substance to enter a cell can result either from inability to pass through the membrane (impermeability) or from lack of a driving force to cause movement across the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Brooks, S. C., u. M. M. Brooks: The permeability of living cells. Protoplasma-Monogr. 19 (1941).

    Google Scholar 

  • Collander, R.: The permeability of plant protoplasts to small molecules. Physiol. Plantarum (Copenh.) 2, 300–311 (1949).

    Article  Google Scholar 

  • Conway, E. J.: A redox pump for the biological performance of osmotic work and its relation to the kinetics of free ion diffusion across membranes. Internat. Rev. Cytology 2, 419–445 (1953).

    Article  CAS  Google Scholar 

  • Danielli, J. F.: Morphological and molecular aspects of active transport. Symposia Soc. Exper. Biol. 8, 502–516 (1954).

    CAS  Google Scholar 

  • Davson, H., and J. F. Danielli: The permeability of natural membranes, 2d ed. Cambridge: Cambridge University Press 1952.

    Google Scholar 

  • Epstein, E.: Mechanism of ion absorption by roots. Nature (Lond.) 171, 83–84 (1953).

    Article  CAS  Google Scholar 

  • Cation-induced respiration in barley roots. Science (Lancaster, Pa.) 120, 987–988 (1954).

    Google Scholar 

  • Epstein, E., and C. E. Hägen: A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E., and J. L. Leggett: The absorption of alkaline earth cations by barley roots: Kinetics and mechanism. Amer. J. Bot. 41, 785–792 (1954).

    Article  CAS  Google Scholar 

  • Garby, L., u. H. Linderholm: The permeability of frog skin to heavy water and to ions, with special reference to the effect of some diuretics. Acta physiol. scand. (Stockh.) 28, 336–346 (1953).

    Article  CAS  Google Scholar 

  • Goldacre, R. J.: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytology 1, 135–164 (1952).

    Article  CAS  Google Scholar 

  • Jacobs, M. H.: The measurement of cell permeability with particular reference to the erythrocyte. In Trends in Physiology and Biochemistry, pp. 149–171. Ed. E. S. G. Barron, New York: Academic Press 1952.

    Google Scholar 

  • James, W. O., and D. Boulter: Further studies of the terminal oxidases in the embryos and young roots of barley. New Phytologist 45, 1–12 (1955).

    Article  Google Scholar 

  • Kofoed-Johnson, V., u. H. H. Ussing: The contributions of diffusion and flow to the passage of D2O through living membranes. Acta physiol. scand. (Stockh.) 28, 60–76 (1953).

    Article  Google Scholar 

  • Lundegårdh, H.: Transport of water and salts through plant tissues. Nature (Lond.) 157, 575–577 (1946).

    Article  Google Scholar 

  • Anion respiration: the experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Symposia Soc. Exper. Biol. 8, 262–296 (1954).

    Google Scholar 

  • Ordin, L., and L. Jacobson: Inhibition of ion absorption and respiration in barley roots. Plant Physiol. 30, 21–27 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, W. J. V.: The mechanism of accumulation in living cells. J. Gen. Physiol. 35, 579–594 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Overstreet, R., and L. Jacobson: Mechanisms of ion absorption by roots. Annual Rev. Plant Physiol. 3, 189–206 (1952).

    Article  Google Scholar 

  • Prescott, D. M., u. E. Zeuthen: Comparison of water diffusion and water filtration across cell surfaces. Acta physiol. scand. (Stockh.) 28, 77–94 (1953).

    Article  CAS  Google Scholar 

  • Robertson, R. N., and M.J. Wilkins: VII. The quantitative relation between salt accumulation and salt respiration. Austral. J. Sci. Res. B 1, 17–37 (1948).

    CAS  Google Scholar 

  • Robertson, R. N., M. J. Wilkins and D. C. Weeks: IX. The effects of 2,4-dinitrophenol on salt accumulation and salt respiration. Austral. J. Sci. Res. B 4, 248–264 (1951).

    CAS  Google Scholar 

  • Rosenberg, T.: The concept and definition of active transport. Symposia Soc. Exper. Biol. 8, 27–41 (1954).

    CAS  Google Scholar 

  • Russell, R. S.: The relationship between metabolism and the accumualtion of ions by plants. Symposia Soc. Exper. Biol. 8, 343–366 (1954).

    CAS  Google Scholar 

  • Russell, R. S., and M. J. Ayland: Exchange reactions in the entry of cations into plant tissues. Nature (Lond.) 175, 204–205 (1955).

    Article  CAS  Google Scholar 

  • Steinbach, H. B.: Permeability. Annual Rev. Plant Physiol. 2, 323–342 (1951).

    Article  CAS  Google Scholar 

  • Stern, J. R., L. B. Eggleston, R. Hems and H.A. Krebs: Accumulation of glutamic acid in isolated brain tissue. Biochemie. J. 44, 410–418 (1949).

    CAS  Google Scholar 

  • Steward, F. C., and F.K.Millar: Salt accumulation in plants: a reconsideration of the role of growth and metabolism. Symposia Soc. Exper. Biol. 8, 367–406 (1954).

    CAS  Google Scholar 

  • Steward, F. C., and H. E. Street: The nitrogenous constituents of plants. Annual Rev. Biochem. 16, 471–502 (1947).

    Article  CAS  Google Scholar 

  • Teorell, T.: Permeability. Annual Rev. Physiol. 11, 545–564 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Transport processes and electrical phenomena in ionic membranes. Progr. in Biophysics a. Biophysical Chem. 3, 305–319 (1953).

    Google Scholar 

  • Ussing, H. H.: Transport of ions across cellular membranes. Physiologic. Rev. 29, 127–155 (1949).

    CAS  Google Scholar 

  • Transport through biological membranes. Annual Rev. Physiol. 15, 1–20 (1953).

    Google Scholar 

  • Ion transport across biological membranes. In Ion Transport across Membranes, pp. 3–22. Ed. by H. T. Clark, New York: Academic Press 1954.

    Google Scholar 

  • Wartiovaara, V.: The permeability of the plasma membranes of Nitella to normal primary alcohols at low and intermediate temperatures. Physiol. Plantarum (Copenh.) 2, 184–196 (1949).

    Article  Google Scholar 

  • Zur Erklärung der ültrafüterwirkung der Plasmahaut. Physiol. Plantarum (Copenh.) 3, 462–478 (1950).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Kramer, P.J. (1956). Permeability in relation to respiration. In: Bahr, G.F., et al. Allgemeine Physiologie der Pflanzenzelle / General Physiology of the Plant Cell. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94676-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94676-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94677-6

  • Online ISBN: 978-3-642-94676-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics