The uptake of water by plant cells

  • Paul J. Kramer
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 2)


The importance of water in the physiology of plants makes it desirable to have an understanding of the nature and origin of the forces responsible for the movement of water into and out of plant cells and tissues. Only incidental attention will be given to the absorption and translocation of water in the plant as a whole in this chapter because these topics are discussed in detail in Volume 3 of this series. It may seem that the uptake of water by cells must be fully understood by this time, but those most familiar with the literature of this subject know that this is not true. There are differences in opinion concerning the relative importance of osmotic and nonosmotic forces in water uptake, concerning the relation of water uptake to growth and cell enlargement, and even concerning the best terminology to use in discussing the problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackley, W. B.: Seasonal and diurnal changes in the water contents and water deficits of Bartlett pear leaves. Plant Physiol. 29, 445–448 (1954).PubMedCrossRefGoogle Scholar
  2. Allen, P. J., and W. H. Price: The relation between respiration and protoplasmic flow in the slime mold, Physarum polycephalum. Amer. J. Bot. 37, 393–402 (1950).CrossRefGoogle Scholar
  3. Anderson, D. B., and T. Kerr: A note on the growth behavior of cotton bolls. Plant Physiol. 18, 261–269 (1943).PubMedCrossRefGoogle Scholar
  4. Arcichovskij, V., and A. Ossipov: Die Saugkraft der baumartigen Pflanzen der zentralasiatischen Wüsten nebst Transpirationsmessungen am Saxaul (Arthrophytum haloxylon Litw.). Planta (Berl.) 14, 552–565 (1931).CrossRefGoogle Scholar
  5. Bartholomew, E. T.: Internal decline of lemons. III. Water deficit in lemon fruits caused by excessive leaf evaporation. Amer. J. Bot. 13, 102–117 (1926).CrossRefGoogle Scholar
  6. Bauer, L.: Über den Wasserhaushalt der Submersen. I. Zur Frage der Saugkräfte der Submersen. Protoplasma 41, 178–188 (1952).CrossRefGoogle Scholar
  7. Bennet-Clark, T. A.: Non-osmotic water movement in plant cells. Discussion of the Faraday Soc. 3, 134–139 (1948).CrossRefGoogle Scholar
  8. Bennet-Clark, T. A., and D. Bexon: Water relations of plant cells. III. The respiration of plasmolyzed tissues. New Phytologist 42, 65–92 (1943).CrossRefGoogle Scholar
  9. Bennet-Clark, T. A., A. D. Greenwood and J. W. Barker: Water relations and osmotic pressures of plant cells. New Phytologist 35, 277–291 (1936).CrossRefGoogle Scholar
  10. Blinks, L. R.: The relations of bioelectric phenomena to ionic permeability and to metabolism in large plant cells. Cold Spring Harbor Symp. Quant. Biol. 8, 204–215 (1940).CrossRefGoogle Scholar
  11. Blinks, L. R., and R. L. Airth: The role of electroosmosis in living cells. Science (Lancaster, Pa.) 113, 474–475 (1951).Google Scholar
  12. Bogen, H. J.: Zellphysiologie und Protoplasmatik. Fortschr. Bot. 13, 192–226 (1951).Google Scholar
  13. Zellphysiologie und Protoplasmatik. Fortschr. Bot. 14, 256–288 (1953).Google Scholar
  14. Beiträge zur Physiologie der nichtosmotischen Wasseraufnahme. Planta (Berl.) 42, 140–155 (1953).Google Scholar
  15. Zellphysiologie und Protoplasmatik. Fortschr. Bot. 15, 212–258 (1954).Google Scholar
  16. Bogen, H. J., and H. Prell: Messung nichtosmotischer Wasseraufnahme an plasmolysierten Protoplasten. Planta (Berl.) 41, 459–479 (1953).CrossRefGoogle Scholar
  17. Bonner, J., R. S. Bandurski and A. Millerd: Linkage of respiration to auxin-induced water uptake. Physiol. Plantarum (Copenh.) 6, 511–522 (1953).CrossRefGoogle Scholar
  18. Brauner, L.: Experiments on anomalous osmosis. Rev. Fac. Sci. Univ. Istanbul, Sér. B 10, 1–59 (1945).Google Scholar
  19. Brauner, L., and M. Brauner: The relations between water-intake and oxvbiosis in living plant-tissues. II. The tensility of the cell wall. Rev. Fac. Sci. Univ. Istanbul, Sér. B 8, 30–75 (1943).Google Scholar
  20. Brauner, L., M. Brauner and M. Hasman: The relation between water-intake and oxybiosis in living plant-tissues. Rev. Fac. Sci. Univ. Istanbul 5, 266–309 (1940).Google Scholar
  21. Brauner, L., and M. Hasman: Über den Mechanismus der Heteroauxinwirkung auf die Wasseraufnahme von pflanzlichem Speichergewebe. Bull. Fac. Med. Istanbul 12, 57–71 (1949).Google Scholar
  22. Weitere Untersuchungen über den Wirkungsmechanismus des Heteroauxins bei der Wasseraufnahme von Pflanzenparenchymen. Protoplasma 41, 302–326 (1952).Google Scholar
  23. Broyer, T. C.: Further theoretical considerations of modes of expression and factors possibly concerned in the movement of materials through a two-phased system. Plant Physiol. 26, 655–676 (1951a).CrossRefGoogle Scholar
  24. Experiments on imbibition and other factors concerned in the water relations of plant tissues. Amer. J. Bot. 38, 485–495 (1951b).Google Scholar
  25. Buhmann, A.: Kritische Untersuchungen über vergleichende plasmolytische und kryoskopische Bestimmung des osmotischen Wertes bei Pflanzen. Protoplasma 23, 579–612 (1935).CrossRefGoogle Scholar
  26. Burström, H.: Studies on growth and metabolism of roots. IX. Cell elongation and water absorption. Physiol. Plantarum (Copenh.) 6, 262–276 (1953a).CrossRefGoogle Scholar
  27. Growth and water absorption of Helianthus tuber tissue. Physiol. Plantarum (Copenh.) 6, 685–691 (1953b).Google Scholar
  28. Butler, G. W.: Ion uptake by young wheat plants. I. Time course of the absorption of potassium and chloride ions. Physiol. Plantarum (Copenh.) 6, 594–616 (1953).CrossRefGoogle Scholar
  29. Chu, C. R.: Der Einfluß des Wassergehaltes der Blätter der Waldbäume auf ihre Lebensfähigkeit, ihre Saugkräfte und ihren Turgor. Flora (Jena) 130, 384–437 (1936).Google Scholar
  30. Commoner, B., and D. Mazia: The mechanism of auxin action. Plant Physiol. 17, 682–685 (1942).PubMedCrossRefGoogle Scholar
  31. Commoner, B., S. Fogel and W. H. Muller: The mechanism of auxin action. The effect of auxin on water absorption by potato tissue. Amer. J. Bot. 30, 23–28 (1943).CrossRefGoogle Scholar
  32. Crafts, A. S., H. B. Currier and C. R. Stocking: Water in the physiology of plants. Waltham, Mass.: Chronica Botanica 1949.Google Scholar
  33. Currier, H. B.: Water relations of root cells of Beta vulgaris. Amer. J. Bot. 31, 378–387 (1944).CrossRefGoogle Scholar
  34. Dutrochet, H. J.: Mémoires pour servir a l’histoire anatomique et physiologique des végétaux et des animaux. Paris: J. B. Baillière 1837.Google Scholar
  35. Eaton, F. M.: Water uptake and root growth as influenced by inequalities in the concentration of the substrate. Plant Physiol. 16, 545–564 (1941).PubMedCrossRefGoogle Scholar
  36. Toxicity and accumulation of chloride and sulfate salts in plants. J. Agricult. Res. 64, 357–399 (1942).Google Scholar
  37. The osmotic and vitalistic interpretations of exudation. Amer. J. Bot. 30, 663–674 (1943).Google Scholar
  38. Frey-Wyssling, A.: Growth of plant cell walls. Symposium Soc. Exp. Biol. 6, 320–328 (1952).Google Scholar
  39. Goldacre, R. J.: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytology 1, 135–164 (1952).CrossRefGoogle Scholar
  40. Greenidge, K. N. H.: Studies in the physiology of forest trees. I. Physical factors affecting the movement of water. Amer. J. Bot. 41, 807–811 (1954).CrossRefGoogle Scholar
  41. Guttenberg, H. V., and A. Beythien: Über den Einfluß von Wuchsstoffen auf die Wasserpermeabilität des Protoplasmas. Planta (Berl.) 40, 36–69 (1951).CrossRefGoogle Scholar
  42. Guttenberg, H. V., and G. Meinl: Über den Einfluß von Wirkstoffen auf die Wasserpermeabilität des Protoplasmas. II. Über den Einfluß des pH-Wertes und der Temperatur auf die durch Heteroauxin bedingten Veränderungen der Wasserpermeabilität. Planta (Berl.) 40, 431–442 (1952).CrossRefGoogle Scholar
  43. Backett, D. P.: The osmotic change during auxin-induced water uptake by potato tissue. Plant Physiol. 27, 279–284 (1952).CrossRefGoogle Scholar
  44. Hackett, D. P., and K.V. Thimann: The action of inhibitors on water uptake by potato tissue. Plant Physiol. 25, 648–652 (1950).PubMedCrossRefGoogle Scholar
  45. The nature of the auxin-induced water uptake by potato tissue. Amer. J. Bot. 39, 553–560 (1952).Google Scholar
  46. The nature of the auxin-induced water uptake by potato tissue. II. The relation between respiration and water absorption. Amer. J. Bot. 40, 183–188 (1953).Google Scholar
  47. Hanson, J. B., and J. Bonner: The relationship between salt and water uptake in Jerusalem artichoke tuber tissue. Amer. J. Bot. 41, 702–710 (1954).CrossRefGoogle Scholar
  48. Harris, J. A.: The physico-chemical properties of plant saps in relation to phytogeography. Minneapolis: Univ. Minnesota Press 1934.Google Scholar
  49. Hasman, M.: Investigations of the water exchange of potato tissue under the effect of 6-aminoundecane and di-n-amylacetic acid. Physiol. Plantarum (Copenh.) 6, 187–198 (1953).Google Scholar
  50. Hayward, H. E., and W. B. Spurr: Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz. 105, 152–164 (1943).CrossRefGoogle Scholar
  51. Herrick, E. H.: Seasonal and diurnal variations in the osmotic values, and suction tension values in the aerial portions of Ambrosia trifida. Amer. J. Bot. 20, 18–34 (1933).CrossRefGoogle Scholar
  52. Höfler, K.: Ein Schema für die osmotische Leistung der Pflanzenzelle. Ber. dtsch. bot. Ges. 38, 288–298 (1920).Google Scholar
  53. Huber, B., and G. Merkenschlager: Über die Wirkung kleinster Saugkräfte auf die Samenkeimung. Planta (Berl.) 40, 112–120 (1951).CrossRefGoogle Scholar
  54. Kausch, W.: Physiologische Wirkung kleinster Saugkräfte. Planta (Berl.) 41, 59–63 (1952).CrossRefGoogle Scholar
  55. Keith, N. M.: Water metabolism. Ann. Rev. Physiol. 15, 63–84 (1953).CrossRefGoogle Scholar
  56. Kelly, S.: The relationship between respiration and water uptake in the oat coleoptile. Amer. J. Bot. 34, 521–526 (1947).CrossRefGoogle Scholar
  57. Kerr, T., and D. B. Anderson: Osmotic quantities in growing cotton bolls. Plant Physiol. 19, 338–349 (1944).PubMedCrossRefGoogle Scholar
  58. Kramer, P. J.: The relation between rate of transpiration and rate of absorption of water in plants. Amer. J. Bot. 24, 10–15 (1937).CrossRefGoogle Scholar
  59. Water relations of plant cells and tissues. Ann. Rev. Plant Physiol. 5, 253–272 (1955).Google Scholar
  60. Kramer, P. J., and H. B. Currier: Water relations of plant cells and tissues. Ann. Rev. Plant Physiol. 1, 265–284 (1950).CrossRefGoogle Scholar
  61. Lambertz, P.: Untersuchungen über das Vorkommen von Plasmodesmen in den Epidermisaußenwänden. Planta (Berl.) 44, 147–190 (1954).CrossRefGoogle Scholar
  62. Levitt, J.: The thermodynamics of active (non-osmotic) water absorption. Plant Physiol. 22, 514–525 (1947).PubMedCrossRefGoogle Scholar
  63. The role of active water absorption in auxin-induced water uptake by aerated potato discs. Plant Physiol. 23, 505–515 (1948).Google Scholar
  64. Toward a clearer concept of osmotic quantities in plant cells. Science (Lancaster, Pa.) 113, 228–231 (1951).Google Scholar
  65. Further remarks on the thermodynamics of active (non-osmotic) water absorption. Physiol. Plantarum (Copenh.) 6, 240–252 (1953).Google Scholar
  66. Steady state versus equilibrium thermodynamics in the concept of “active” water absorption. Physiol. Plantarum (Copenh.) 7, 592–594 (1954).Google Scholar
  67. Li, T. T.: Effect of climatic factors on suction force. Quart. Rev. Biol. 4, 401–414 (1929).CrossRefGoogle Scholar
  68. Lovtrup, S., and A. Pigon: Diffusion and active transport of water in the ameba Chaos chaos. C. r. Trav. Labor. Carlsberg, Ser. Chim. 28, 1–36 (1951).Google Scholar
  69. Lundegardh, H.: Bleeding and sap movement. Ark. Bot., Ser. A 31 (2), 1–56 (1944).Google Scholar
  70. The translocation of salts and water through wheat roots. Physiol. Plantarum (Copenh.) 3, 103–151 (1950).Google Scholar
  71. Lyon, C. J.: A non-osmotic force in the water relations of potato tubers during storage. Plant Physiol. 17, 250–266 (1942).PubMedCrossRefGoogle Scholar
  72. Magistad, O.C., and R. F. Reitemeier: Soil solution concentrations at the wilting point and their correlation with plant growth. Soil Sci. 55, 351–360 (1943).CrossRefGoogle Scholar
  73. Mason, T. G., and E. Phillis: Experiments on the extraction of sap from the vacuole of the cotton plant and their bearing on the osmotic theory of water absorption by the cell. Ann. of Bot. 3, 531–544 (1939).Google Scholar
  74. Mc Cool, M. M., and C. E. Millar: The water content of the soil and the composition and concentration of the soil solution as indicated by the freezing point lowerings of the roots and tops of plants. Soil Soi. 3, 113–138 (1917).Google Scholar
  75. Meeuse, A. D. J.: Plasmodesmata. Bot. Review 7, 249–262 (1941).CrossRefGoogle Scholar
  76. Meyer, B. S.: A critical evaluation of the terminology of diffusion phenomena. Plant Physiol. 20, 142–164 (1945).PubMedCrossRefGoogle Scholar
  77. Meyer, B. S., and D. B. Anderson: Plant physiology. New York: D. van Nostrand 1952.Google Scholar
  78. Molz, F. J.: A study of suction force by the simplified method. II. Periodic variations and the influence of habitat. Amer. J. Bot. 13, 465–501 (1926).CrossRefGoogle Scholar
  79. Myers, G. M. P.: The water permeability of unplasmolyzed tissues. J. of Exper. Bot. 2, 129–144 (1951).CrossRefGoogle Scholar
  80. Oppenhetmer, H. R.: Über Zuverlässigkeit und Anwendungsgrenzen der üblichsten Methoden zur Bestimmung der osmotischen Konzentration pflanzlicher Zellsäfte. Planta (Berl.) 16, 467–517 (1932).CrossRefGoogle Scholar
  81. Osterhout, W. J. V.: Some aspects of secretion. I. Secretion of water. J. Gen. Physiol. 30, 439–447 (1947).PubMedCrossRefGoogle Scholar
  82. Overbeek, J. van: Water uptake by excised root systems of the tomato due to non-osmotic forces. Amer. J. Bot. 29, 677–683 (1942).CrossRefGoogle Scholar
  83. Auxin, water uptake and osmotic pressure in potato tissue. Amer. J. Bot. 31, 265–269 (1944).Google Scholar
  84. Owen, P. C.: The relation of germination of wheat to water potential. J. of Exper. Bot. 3, 188–203 (1952).CrossRefGoogle Scholar
  85. Pohl, R.: Zur Reaktionsweise des Wuchsstoffes bei der Zellstreckung. Z. Bot. 41, 343–372 (1953).Google Scholar
  86. Die Ursache der Aktivitätsunterschiede von Wuchsstoffen im Test und im Zylindertest. Planta (Berl.) 44, 191–202 (1954).Google Scholar
  87. Reinders, D. E.: The process of water-intake by discs of potato tuber tissue. Proc. Roy. Acad. Sci. Amsterdam 41, 820–831 (1938).Google Scholar
  88. Intake of water by parenchymatic tissue. Ree. Trav. bot. néerl. 39, 1–140 (1942).Google Scholar
  89. Roberts, E. A.: The epidermal cells of roots. Bot. Gaz. 62, 488–506 (1916).CrossRefGoogle Scholar
  90. Roberts, O., and S. A. Styles: An apparent connection between the presence of colloids and the osmotic pressure of conifer leaves. Sci. Proc. Roy. Dublin Soc. 22, 119–125 (1939).Google Scholar
  91. Robinson, J. R.: The active transport of water in living systems. Biol. Rev. Cambridge Philos. Soc. 28, 158–192 (1953).CrossRefGoogle Scholar
  92. Robinson, J. R., and R. A. Mc Cance: Water metabolism. Ann. Rev. Physiol. 14, 115–142 (1952).CrossRefGoogle Scholar
  93. Rosenberg, T., and W. Wilbrandt: Enzymatic processes in cell membrane penetration. Internat. Rev. Cytology 1, 65–92 (1952).CrossRefGoogle Scholar
  94. Rosene, H. F.: Control of water transport in local root regions of attached and isolated roots by means of the osmotic pressure of the external solution. Amer. J. Bot. 28, 402–410 (1941).CrossRefGoogle Scholar
  95. Effect of cyanide on rate of exudation in excised onion roots. Amer. J. Bot. 31, 172–174 (1944).Google Scholar
  96. The effect of anoxia on water exchange and oxygen consumption of onion root tissues. J. Cellul. a. Comp. Physiol. 35, 179–193 (1950).Google Scholar
  97. Rosene, H. F., and L. E. Bartlett: Effect of anoxia on water influx of individual radish root hair cells. J. Cellul. a. Comp. Physiol. 36, 83–96 (1950).CrossRefGoogle Scholar
  98. Spanner, D. C.: The suction potential of cells and some related topics. Ann. of Bot. 16, 379–407 (1952).Google Scholar
  99. The thermodynamics of actively-maintained turgor pressure, with a note on the idea of permeability. Physiol. Plantarum (Copenh.) 7, 278–282 (1954).Google Scholar
  100. Steward, F. C., S. M. Caplin and F. K. Millar: I. New techniques for the investigation of metabolism, nutrition and growth in undifferentiated cells. Ann. of Bot. 16, 57–77 (1952).Google Scholar
  101. Steward, F. C., P. R. Stout and C. Preston: The balance sheet of metabolites for potato discs showing the effect of salts and dissolved oxygen on metabolism at 23° C. Plant Physiol. 15, 409–447 (1940).PubMedCrossRefGoogle Scholar
  102. Stocker, O.: Über die Messung von Bodensaugkräften und ihrem Verhältnis zu den Wurzelsaugkräften. Z. Bot. 23, 27–56 (1930).Google Scholar
  103. Stocking, C. R.: The calculation of tensions in Cucurbita pepo. Amer. J. Bot. 32, 126–134 (1945).CrossRefGoogle Scholar
  104. Thimann, K. V.: Studies on the physiology of cell enlargement. Growth Symposium 10, 5–22 (1951).Google Scholar
  105. The physiology of growth in plant tissues. Amer. Scientist 42, 589–606 (1954).Google Scholar
  106. Thimann, K. V., and C. L. Schneider: The interdependence of auxin and sugar for growth. Amer. J. Bot. 25, 270–280 (1938).CrossRefGoogle Scholar
  107. Thimann, K. V., R. R. Slater and G. S. Christiansen: The metabolism of stem tissue during growth and its inhibition. IV. Growth inhibition without enzyme poisoning. Arch. of Biochem. 28, 130–137 (1950).Google Scholar
  108. Thoday, D.: On turgescence and the absorption of water by the cells of plants. New Phytologist 17, 108–113 (1918).CrossRefGoogle Scholar
  109. Ts’o, P., and G. P. Steinbauer: Effect of maleic hydrazide on auxin-induced water uptake by pea stem segments. Science (Lancaster, Pa.) 118, 193–194 (1953).Google Scholar
  110. Ursprung, A., and G.Blum: Zur Methode der Saugkraftmessung. Ber. dtsch. bot. Ges. 34, 525–539 (1916a).Google Scholar
  111. Über den Einfluß der Außenbedingungen auf den osmotischen Wert. Ber. dtsch. bot. Ges. 34, 123–142 (1916b).Google Scholar
  112. Ussing, H.H.: Transport through biological membranes. Ann. Rev. Physiol. 15, 1–20 (1953).CrossRefGoogle Scholar
  113. Walter, H.: Die Grundlagen der Pflanzenverbreitung. Stuttgart 1949.Google Scholar
  114. Kritisches zur Darstellung der osmotischen Zustandsgrößen in den verschiedenen Lehrbüchern der Botanik. Planta (Berl.) 40, 550–554 (1952).Google Scholar
  115. Wilson, C. C.: Diurnal fluctuations in growth and length of tomato stems. Plant Physiol. 23, 156–157 (1948).PubMedCrossRefGoogle Scholar
  116. Wilson, C. C., W. R. Boggess and P. J. Kramer: Diurnal fluctuations in the moisture content of some herbaceous plants. Amer. J. Bot. 40, 97–100 (1953).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • Paul J. Kramer

There are no affiliations available

Personalised recommendations