Skip to main content
  • 133 Accesses

Abstract

The uptake of materials from their environment is one of the most characteristic and important processes of living organisms. The plant as a whole absorbs water, gases and solutes from the soil, water and air around it. The organs of the plant absorb from each other and the cells within each organ are continually involved in the exchange of a variety of materials. Some of this movement is by mass flow, some by diffusion, and some involves active transport and accumulation against concentration gradients. Most of the uptake of solutes seems to occur by the activities of individual cells and the basic processes can therefore best be discussed in terms of cells and tissues rather than of organs or entire plants. Relatively little attention will be given to absorption by intact, growing plants because that topic will be discussed in detail in other chapters of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Alberda, Th.: The influence of some external factors on growth and phosphate uptake of maize plants of different salt conditions. Rec. Trav. bot. néerl. 41, 541–602 (1948).

    Google Scholar 

  • Andel, O. M. van, W. H. Arisz and R. J. Helder: Influence of light and sugar on growth and salt intake by maize roots. Proc. Kon. Ned. Akad. Wetensch. 53, 159–171 (1950).

    Google Scholar 

  • Arisz, W. H.: Absorption and transport by the tentacles of Drosera capensis. I., II. Proc. Kon. Ned. Akad. Wetensch. 45, 2–8, 794–801 (1942).

    CAS  Google Scholar 

  • Contribution to a theory on the absorption of salts by the plant and their transport in parenchymatous tissue. Proc. Kon. Ned. Akad. Wetensch. 48, 420–446 (1945).

    Google Scholar 

  • Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. III. Proc Kon. Ned. Akad. Wetensch. 51, 28–36 (1948).

    Google Scholar 

  • Active uptake, vacuole-secretion and plasmatic transport of chloride-ions in leaves of Vallisneria spiralis. Acta bot. néerl. 1, 506–515 (1953).

    Google Scholar 

  • Transport of chloride in the “symplasm” of Vallisneria leaves. Nature (Lond.) 174, 223–224 (1954).

    Google Scholar 

  • Arnold, A.: Über den Funktionsmechanismus der Endodermiszellen der Wurzeln. Protoplasma 41, 189–211 (1952).

    Article  Google Scholar 

  • Bartley, W., and R. E. Davies: Secretory activity of mitochondria. Biochemie. J. 52, XX (1952).

    CAS  Google Scholar 

  • Berry, L. J., and M. J. Brock: Polar distribution of respiratory rate in the onion root tip. Plant Physiol. 21, 542–549 (1946).

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S. C.: Selective accumulation with reference to ion exchange by the protoplasm. Trans. Faraday Soc. 33, 1002–1006 (1937).

    Article  CAS  Google Scholar 

  • The intake of radioactive isotopes by living cells. Cold Spring Harbor Symp. Quant. Biol. 8, 171–177 (1940).

    Google Scholar 

  • The penetration of radioactive sodium into Valonia and Halicystis. Protoplasma (Berl.) 42, 63–68 (1953).

    Google Scholar 

  • Brouwer, R.: The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta bot. néerl. 3, 264–312 (1954).

    Google Scholar 

  • Brown, R.: The gaseous exchange between the root and the shoot of the seedling of Cucurbita pepo. Ann. of Bot. 11, 417–437 (1947).

    CAS  Google Scholar 

  • Protoplast surface enzymes and absorption of sugar. Internat. Rev. Cytology 1, 107–118 (1952).

    Google Scholar 

  • Brown, R., and D. Broadbent: The development of cells in the growing zones of the roots. J. of Exper. Bot. 1, 249–263 (1950).

    Article  Google Scholar 

  • Brown, R., and P. M. Cartwright: The absorption of potassium by cells in the apex of the root. J. of Exper. Bot. 4, 197–221 (1953).

    Article  CAS  Google Scholar 

  • Broyer, T. C.: Further observations on the absorption and translocation of inorganic solutes using radioactive isotopes with plants. Plant Physiol. 25, 367–377 (1950).

    Article  PubMed  CAS  Google Scholar 

  • The nature of the process of inorganic solute accumulation in roots. In Mineral Nutrition of Plants, p. 187–249. Ed. by E. Truog. Univ. Wisconsin Press 1951.

    Google Scholar 

  • Broyer, T. C., and R. Overstreet: Cation exchange in plant roots in relation to metabolic factors. Amer. J. Bot. 27, 425–430 (1940).

    Article  CAS  Google Scholar 

  • Burström, H.: The mechanism of ion absorption. In Mineral Nutrition of Plants, p. 251–260. Ed. by E. Truog. Univ. Wisconsin Press 1951.

    Google Scholar 

  • Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617–635 (1953a).

    Article  CAS  Google Scholar 

  • Ion uptake by young wheat plants. I. Time course of the absorption of potassium and chloride. Physiol. Plantarum (Copenh.) 6, 594–616 (1953b).

    Google Scholar 

  • Casari, K.: Über den Plasmolytikum-Wechsel-Effekt. Protoplasma 42, 427–447 (1953).

    Article  Google Scholar 

  • Collander, R.: Der Zellsaft der Characeen. Protoplasma 25, 201–210 (1936).

    Article  CAS  Google Scholar 

  • Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).

    Google Scholar 

  • Conway, E. J.: A redox pump for the biological performance of osmotic work and its relation to the kinetics of free ion diffusion across membranes. Internat. Rev. Cytology 2, 419–445 (1953).

    Article  CAS  Google Scholar 

  • Crafts, A. S., and T. C. Broyer: Migration of salts and water into xylem of the roots of higher plants. Amer. J. Bot. 25, 529–535 (1938).

    Article  CAS  Google Scholar 

  • Davies, R. E., and A. G. Ogston: On the mechanism of secretion of ions by gastric mucosa and by other tissues. Biochemie. J. 46, 324–333 (1950).

    CAS  Google Scholar 

  • Epstein, E.: Mechanism of ion absorption by roots. Nature (Lond.) 171, 83–84 (1953).

    Article  CAS  Google Scholar 

  • Cation-induced respiration in barley roots. Science (Lancaster, Pa.) 120, 987–988 (1954).

    Google Scholar 

  • Epstein, E., and C. E. Hägen: A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–474 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E., and J. L. Leggett: The absorption of alkaline earth cations by barley roots: kinetics and mechanism. Amer. J. Bot. 41, 785–792 (1954).

    Article  CAS  Google Scholar 

  • Franck, J., and J. E. Mayer: An osmotic diffusion pump. Arch. of Biochem. 14, 297–313 (1947).

    CAS  Google Scholar 

  • Freeland, R. O.: Effect of transpiration upon the absorption of mineral salts. Amer. J. Bot. 24, 373–374 (1937).

    Article  CAS  Google Scholar 

  • Goldacre, R. J.: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytology 1, 135–164 (1952).

    Article  CAS  Google Scholar 

  • Goldacre, R. J., and I. J. Lorch: Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature (Lond.) 166, 497–500 (1950).

    Article  CAS  Google Scholar 

  • Gregory, F. G., and H. K. Woodford: An apparatus for the study of the oxygen, salt, and water uptake of various zones of the root, with some preliminary results with Vicia faba. Ann. of Bot., N. S. 3, 147–154 (1939).

    CAS  Google Scholar 

  • Hanson, J. B., and O. Biddulph: The diurnal variation in the translocation of minerals across bean roots. Plant Physiol. 28, 356–370 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J. B., and J. Bonner: The relationship between salt and water uptake in Jerusalem artichoke tuber tissue. Amer. J. Bot. 41, 702–710 (1954).

    Article  CAS  Google Scholar 

  • Hayward, H. E., and W. B. Spurr: Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz. 105, 152–164 (1943).

    Article  CAS  Google Scholar 

  • Higinbotham, N., H. Latimer and R. Eppley: Stimulation of rubidium absorption by auxins. Science (Lancaster, Pa.) 118, 243–245 (1954).

    Google Scholar 

  • Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. néerl. 1, 361–434 (1952).

    CAS  Google Scholar 

  • Hoagland, D. R.: The inorganic nutrition of plants. Waltham, Mass.: Chronica Botanica Co. 1944.

    Google Scholar 

  • Hoagland, D. R., and T. C. Broyer: General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11, 471–507 (1936).

    Article  PubMed  CAS  Google Scholar 

  • Accumulation of salt and permeability in plant cells. J. Gen. Physiol. 25, 865–880 (1942).

    Google Scholar 

  • Hoagland, D. R., and A. R. Davis: The intake and accumulation of electrolytes by plant cells. Protoplasma (Berl.) 6, 610–626 (1929).

    Article  Google Scholar 

  • Höfler, K.: New facts on water permeability. Protoplasma (Wien) 39, 677–683 (1950).

    Article  Google Scholar 

  • Holm-Jensen, I., A. Krogh and V. Wartiovaara: V. Some experiments on the exchange of potassium and sodium between single cells of Characeae and the bathing fluid. Acta bot. fenn. 36, 1 (1944).

    CAS  Google Scholar 

  • Honert, T. H. van den, J. J. Hooymans and W. S. Volkers: Experiments on the relation between water absorption and mineral uptake by plant roots. Acta bot. néerl. 4, 139–155 (1955).

    Google Scholar 

  • Hope, A. B.: Salt uptake by root tissue cytoplasm: the relation between uptake and external concentration. Austral. J. Biol. Sci. 6, 396–409 (1953).

    CAS  Google Scholar 

  • Hope, A. B., and R. N. Robertson: Bioelectric experiments and the properties of plant protoplasm. Austral. J. Sci. 15, 197–203 (1953).

    CAS  Google Scholar 

  • Hope, A. B., and P. G. Stevens: Electrical potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res. B 5, 335–343 (1952).

    CAS  Google Scholar 

  • Humphries, E. C.: III. Observations on roots of pea plants grown in solutions deficient in phosphorus, nitrogen or potassium. J. of Exper. Bot. 3, 291–309 (1952).

    Article  CAS  Google Scholar 

  • Hylmö, B.: Transpiration and ion absorption. Physiol. Plantarum (Copenh.) 6, 333–405 (1953).

    Article  Google Scholar 

  • Jacobson, L., and L. Ordin: Organic acid metabolism and ion absorption in roots. Plant Physiol. 29, 70–75 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, L., and R. Overstreet: A study of the mechanism of ion absorption by plant roots using radioactive elements. Amer. J. Bot. 34, 415–420 (1947).

    Article  CAS  Google Scholar 

  • The uptake by plants of plutonium and some products of nuclear fission adsorbed on soil colloids. Soil Sci. 65, 129–134 (1948).

    Google Scholar 

  • Jacobson, L., R. Overstreet, H. M. King and R. Handley: A study of potassium absorption by barley roots. Plant Physiol. 25, 639–647 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Jacques, A. G.: Kinetics of penetration XV. The restriction of the cellulose wall. J. Gen. Physiol. 22, 147–163 (1938).

    Article  PubMed  CAS  Google Scholar 

  • James, W. O., and D. Boulter: Further studies of the terminal oxidases in the embryos and young roots of barley. New Phytologist 54, 1–12 (1955).

    Article  CAS  Google Scholar 

  • Kramer, P. J.: Plant and soil water relationships. New York: McGraw-Hill Book Co. 1949.

    Google Scholar 

  • Kramer, P. J., and H. H. Wiebe: Longitudinal gradients of P32 absorption in roots. Plant Physiol. 27, 661–674 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Krogh, A.: The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. Roy. Soc. Lond., Ser. B 133, 140–200 (1946).

    Article  CAS  Google Scholar 

  • Laties, G. G.: The osmotic inactivation in situ of plant mitochondrial enzymes. J. of Exper. Bot. 5, 49–70 (1954).

    Article  CAS  Google Scholar 

  • Lundegårdh, H.: Absorption, transport and exudation of inorganic ions by the roots. Ark. Bot. (Stockh.) A 32 (12), 1–139 (1945).

    Google Scholar 

  • Transport of water and salts through plant tissues. Nature (Lond.) 157, 575–577 (1946).

    Google Scholar 

  • Mineral nutrition of plants. Annual Rev. Biochem. 16, 503–528 (1947).

    Google Scholar 

  • Translocation of salt and water through wheat roots. Physiol. Plantarum (Copenh.) 3, 103–151 (1950).

    Google Scholar 

  • Anion respiration: the experimental basiß of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Soc. Exper. Biol. Symp. 8, 262–296 (1954).

    Google Scholar 

  • Lundegårdh, H., and H. Burström: Atmung und Ionenaufnahme. Planta (Berl.) 18, 683–699 (1933).

    Article  Google Scholar 

  • Machlis, L.: The influence of some respiratory inhibitors and intermediates on respiration and salt accumulation of excised barley roots. Amer. J. Bot. 31, 183–192 (1944a).

    Article  CAS  Google Scholar 

  • The respiratory gradient in barley roots. Amer. J. Bot. 31, 281–282 (1944b).

    Google Scholar 

  • Miller, E. C.: Plant physiology. Second edition. New York: McGraw-Hill Book Co. 1938.

    Google Scholar 

  • Milthorpe, J., and R.N.Robertson: 6. Salt respiration and accumulation in barley roots. Austral. J. Exper. Biol. a. Med. 26, 191–197 (1948).

    Google Scholar 

  • Myers, G. M. P.: The water permeability of unplasmolyzed tissues. J. of Exper. Bot. 2, 129–144 (1951).

    Article  CAS  Google Scholar 

  • Olsen, C.: The significance of concentration for the rate of ion absorption by higher plants in water culture. Physiol. Plantarum (Copenh.) 3, 152–164 (1950).

    Article  Google Scholar 

  • Ordin, L., and L. Jacobson: Inhibition of ion absorption and respiration in barley roots. Plant Physiol. 30, 21–27 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, W. J. V.: Some aspects of selective absorption. J. Gen. Physiol. 5, 225–231 (1922).

    Article  PubMed  CAS  Google Scholar 

  • The mechanism of accumulation in living cells. J. Gen. Physiol. 35, 519–594 (1952).

    Google Scholar 

  • Overstreet, R., and L. Jacobson: The absorption by roots of rubidium and phosphate ions at extremely small concentrations as revealed by experiments with Rb86 and P32 prepared without inert carrier. Amer. J. Bot. 33, 107–112 (1946).

    Article  CAS  Google Scholar 

  • Mechanisms of ion absorption by roots. Annual Rev. Plant Physiol. 3, 189–206 (1952).

    Google Scholar 

  • Overstreet, R., L. Jacobson and R. Handley: The effect of calcium on the absorption of potassium by barley roots. Plant Physiol. 27, 583–590 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Plowe, J.: Membranes in the plant cells. Protoplasma (Berl.) 12, 196–240 (1931).

    Article  Google Scholar 

  • Prevot, P., and F. C. Steward: Salient features of the root system relative to the problem of salt absorption. Plant Physiol. 11, 509–534 (1936).

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, A.: Enzyme systems of the cell surface involved in the uptake of sugars by yeast. Soc. Exper. Biol. Symp. 8, 165–201 (1954).

    CAS  Google Scholar 

  • Russell, R. S.: The relationship between metabolism and the accumulation of ions by plants. Soc. Exper. Biol. Symp. 8, 343–366 (1954).

    CAS  Google Scholar 

  • Russell, R. S., and M. J. Ayland: Exchange reactions in the entry of cations into plant tissues. Nature (Lond.) 175, 204–205 (1955).

    Article  CAS  Google Scholar 

  • Russell, R. S., R. P. Martin and O. N. Bishop: II. The effect of phosphate status and root metabolism on the distribution of absorbed phosphate between roots and shoots. J. of Exper. Bot. 4, 136–156 (1953).

    Article  CAS  Google Scholar 

  • III. The relationship between the external concentration and the absorption of phosphate. J. of Exper. Bot. 5, 327–342 (1954).

    Google Scholar 

  • Scott, L. I., and J. H. Priestley: A reconsideration of the entry of water and salts in the absorbing region. New Phytologist 27, 125–140 (1928).

    Google Scholar 

  • Seemann, F.: Der Einfluß von Neutralsalzen und Nichtleitern auf die Wasserpermeabilität des Protoplasmas. Protoplasma (Wien) 42 (3), 109–132 (1953).

    Article  Google Scholar 

  • Skelding, A. D., and W. J. Rees: An inhibitor of salt absorption in the root tissue of red beet. Ann. of Bot. 16, 513–529 (1952).

    Google Scholar 

  • Spiegelman, S., and J. M. Reiner: A kinetic analysis of potassium accumulation and sodium exclusion. Growth 6, 367–389 (1942).

    CAS  Google Scholar 

  • Steward, F. C: V. Observations upon the effects of time oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma (Berl.) 18, 208–242 (1933).

    Article  CAS  Google Scholar 

  • Steward, F. C., W. E. Berry and T. C. Broyer: VIII. The effect of oxygen upon respiration and salt accumulation. Ann. of Bot. 50, 345–366 (1936).

    CAS  Google Scholar 

  • Steward, F. C., S. M. Caplin and F. K. Millar: New techniques for the investigation of metabolism, nutrition and growth in undifferentiated cells. Ann. of Bot. 16, 57–77 (1952).

    CAS  Google Scholar 

  • Steward, F. C., and J. A. Harrison: IX. The absorption of rubidium bromide by potato discs. Ann. of Bot., N. S. 3, 427–453 (1939).

    CAS  Google Scholar 

  • Steward, F. C., and F. K. Millar: Salt accumulation in plants: a reconsideration of the role of growth and metabolism. Soc. Exper. Biol. Symp. 8, 367–406 (1954).

    CAS  Google Scholar 

  • Steward, F. C., P. Prevot and J. A. Harrison: Absorption and accumulation of rubidium bromide by barley plants. Localization in the root of cation accumulation and of transfer to the shoot. Plant Physiol. 17, 411–421 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Steward, F. C., and H. E. Street: The nitrogenous constituents of plants. Annual Rev. Biochem. 16, 471–502 (1947).

    Article  CAS  Google Scholar 

  • Stout, P. R., and R. Overstreet: Soil chemistry in relation to inorganic nutrition of plants. Annual Rev. Plant Physiol. 1, 305–342 (1950).

    Article  Google Scholar 

  • Street, H. E., and J. S. Lowe: The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. of Bot. 14, 307–329 (1950).

    CAS  Google Scholar 

  • Sutcliffe, J. F.: The influence of internal ion concentration on potassium accumulation and salt respiration of red beet root tissue. J. of Exper. Bot. 3, 59–76 (1952).

    Article  CAS  Google Scholar 

  • Ion secretion in plants. Internat. Rev. Cytology 2, 179–200 (1953).

    Google Scholar 

  • The absorption of potassium ions by plasmolyzed cells. J. of Exper. Bot. 5, 215–231 (1954a).

    Google Scholar 

  • The exchangeability of potassium and bromide ions in cells of red beet root tissue. J. of Exper. Bot. 5, 313–326 (1954b).

    Google Scholar 

  • Cation absorption by non-growing plant cells. Soc. Exper. Biol. Symp. 8, 325–341 (1954c).

    Google Scholar 

  • Ulrich, A.: Metabolism of non-volatile organic acids in excised barley roots as related to cation-anion balance during salt absorption. Amer. J. Bot. 28, 526–537 (1941).

    Article  CAS  Google Scholar 

  • Metabolism of organic acids in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Amer. J. Bot. 29, 220–227 (1942).

    Google Scholar 

  • Ussing, H. H.: Ion transport across biological membranes. In Ion Transport across Membranes. Ed. by H. T. Clark. New York: Academic Press 1954.

    Google Scholar 

  • Viets, F. G.: Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol. 19, 466–480 (1949).

    Article  Google Scholar 

  • Vlamis, J., and A. R. Davis: Effects of oxygen tension on certain physiological responses of rice, barley and tomato. Plant Physiol. 19, 33–51 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Wanner, H.: Die relative Größe der Temperaturkoeffizienten von Kationen- und Anionenaufnähme. Ber. Schweiz, bot. Ges. 58, 123–130 (1948).

    CAS  Google Scholar 

  • Weeks, D. C., and R. N. Robertson: VIII. Dependence of salt accumulation and salt respiration upon the cytochrome system. Austral. J. Sci. Res. B 3, 487–500 (1950).

    Google Scholar 

  • Wiebe, H. H.: A study of absorption and translocation of radioactive isotopes in various regions of barley roots. Ph. D. Diss. Duke University 1953.

    Google Scholar 

  • Wiebe, H. H., and P. J. Kramer: Translocation of radioactive isotopes from various regions of roots of barley seedlings. Plant Physiol. 29, 342–348 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Wiersum, L. K.: Transfer of solutes across young roots. Rev. Trav. bot. néerl. 41, 1–79 (1947).

    Google Scholar 

  • Wilbrandt, W.: Secretion and transport of nonelectrolytes. Soc. Exper. Biol. Symp. 8, 136–162 (1954).

    Google Scholar 

  • Williams, D. E., and N. T. Coleman: Cation exchange properties of plant root surfaces. Plant a. Soil 2, 243–256 (1950).

    Article  CAS  Google Scholar 

  • Woodford, E. K., and F. G. Gregory: Preliminary results obtained with an apparatus for the study of salt uptake and root respiration of whole plants. Ann. of Bot., N. S. 12, 335–370 (1948).

    CAS  Google Scholar 

  • Wright K. E.: Transpiration and the absorption of mineral salts. Plant Physiol. 14, 171–174 (1939).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Kramer, P.J. (1956). The uptake of salts by plant cells. In: Bahr, G.F., et al. Allgemeine Physiologie der Pflanzenzelle / General Physiology of the Plant Cell. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94676-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94676-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94677-6

  • Online ISBN: 978-3-642-94676-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics