Neurophysiologische Diagnostik der Rückenmarkfunktion

  • A. Curt
  • V. Dietz
Conference paper

Zusammenfassung

In Ergänzung zur klinisch-neurologischen Untersuchung (ASIA Untersuchungsprotokoll) können neurophysiologische Untersuchungen (somatosensibel-evozierte Potentiale (SSEP), motorischevozierte Potenziale (MEP), Elektroneuromyographie (ENMG)) zur Erfassung der Schwere und Ausdehnung einer medizinischen/traumatischen Rückenmarkläsion und zur weiteren Planung diagnostischer Maßnahmen eingesetzt werden. Zusätzlich zur klinischen Untersuchung ermöglichen diese Methoden auch bei eingeschränkt kooperationsfähigen Patienten (Intensivstation, mangelndes Sprachverständnis, Intoxikation) eine Beurteilung der Rückenmarkläsion. Neben der Diagnose erlauben sie prognostische Aussagen über die weitere Entwicklung der neurologischen Ausfälle und deren funktionellen Konsequenzen zu treffen. Durch den gezielten Einsatz verschiedener Untersuchungstechniken kann die funktionelle Prognose, z. B. Entwicklung der Geh-, Hand- und Blasenfunktion, sehr differenziert gestellt werden. Durch die elektroneuromyographische Untersuchungen kann früh die Entwicklung eines schlaffen oder spastischen Tonus paretischer Hand- und Beinmuskeln erfasst werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Meinecke FW (1968) Frequency and distribution of associated injuries in traumatic paraplegia and tetraplegia. Paraplegia 5: 196–209PubMedCrossRefGoogle Scholar
  2. 2.
    Dietz V, Young RR (1996) The Syndromes of spinal cord dysfunction. In: Brandt T et al. (eds) Neurological Disorders: Course and Treatment. Academic Press, San Diego, S. 641–652Google Scholar
  3. 3.
    Gerner HJ (1992) Die Querschnittlähmung. Erstversorgung, Behandlungsstrategie, Rehabilitation. Blockwell Wissenschaft, BerlinGoogle Scholar
  4. 4.
    Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH,Vernon JDS, Walsh JJ (1969) The value of postural reduction in the initial managment of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia 73: 179–192CrossRefGoogle Scholar
  5. 5.
    Maynard FM, Reynold GG, Fountain S, Wilmot C, Hamilton R (1979) Neurological progosis after traumatic quadriplegia. J Neurosurg 50: 611–616PubMedCrossRefGoogle Scholar
  6. 6.
    Foo D, Subrahmanyan TS, Rossier AB (1981) Posttraumatic acute anterior spinal cord syndrome. Paraplegia 19: 201–205PubMedCrossRefGoogle Scholar
  7. 7.
    Crozier KS, Graziani V, Ditunno JF, Herbison GJ (1991) Spinal cord injury: Prognosis for ambulation based on sensory examination in patients who are initially motor complete. Arch Phys Med Rehabil 72: 119–121PubMedGoogle Scholar
  8. 8.
    Roth EJ, Lawler MH, Yarkony GM (1990) Traumatic central cord syndrome: clinical features and functinal outcomes. Arch Phys Med Rehabil 71: 18–23PubMedGoogle Scholar
  9. 9.
    Schneider RC, Cherry C, Pantek H (1954) The syndrome of acute central cervical spine cord injury. J Neurosurg 11: 546–577PubMedCrossRefGoogle Scholar
  10. 10.
    Ditunno JF (1992) New spinal cord injury standards, 1992. Paraplegia 30: 90–91PubMedCrossRefGoogle Scholar
  11. 11.
    Ditunno JF, Young W, Donovan WH, Creasy G (1994) The international standards booklet for neurological and functional classification of spinal cord injury. Paraplegia 32: 70–80PubMedCrossRefGoogle Scholar
  12. 12.
    Waters RL, Adkins RH, Yakura JS (1991) Definition of complete spinal cord injury. Paraplegia 29: 573–581PubMedCrossRefGoogle Scholar
  13. 13.
    Wu L, Marino RJ, Herbison GJ, Ditunno JF (1992) Recovery of zero-grade muscles in the zone of partial preservation in motor complete quadriplegia. Arch Phys Med Rehabil 73: 40–43PubMedGoogle Scholar
  14. 14.
    Donovan WH, Bedbrook GM (1980) Sensory and motor activity in the posterior primary rami following complete spinal cord injury. Arch Phys Med Rehabil 61: 133–138PubMedGoogle Scholar
  15. 15.
    Waters RL, Rodney A, Adkins RH, Yakura JS, Sie J (1994) Motor and sensory recovery following incomplete tetraplegia. Arch Phys Med Rehabil 75: 306–311PubMedCrossRefGoogle Scholar
  16. 16.
    Waters RL, Rodney A, Adkins RH, Yakura JS, Sie J (1993) Motor and sensory following complete tetraplegia. Arch Phys Med Rehabil 74: 242–247PubMedGoogle Scholar
  17. 17.
    Rowed DW (1982) Value of somatosensory evoked potentials for prognosis in partial cord injuries. In: Tator CH (ed) Early Managment of Acute Spinal Injury. Raven Press, New YorkGoogle Scholar
  18. 18.
    Grüninger W, Ricker K (1981) Somatosensory cerebral evoked potentials in spinal cord disease. Paraplegia 19: 206–215PubMedCrossRefGoogle Scholar
  19. 19.
    Sedgwick TB, El-Nagamy E, Frankel H (1980) Spinal cord potential in traumatic paraplegia and quadriplegia. J Neurol Neurosurg Psychiat 43: 823–830PubMedCrossRefGoogle Scholar
  20. 20.
    York DH, Watts C, Raffensberger M, Spagnola T, Joyce C (1983) Utilization of somatosensory evoked cortical potentials in spinal cord injury. Spine 8: 832–839PubMedCrossRefGoogle Scholar
  21. 21.
    Welch RD, Lobley SJ, O’Sullivan SB, Freed MM (1986) Functional independence in quadriplegia: critical levels. Arch Phys Med Rehabil 67: 235–240PubMedGoogle Scholar
  22. 22.
    Yarkony GM, Elliott JR, Lowell L, Heinemann AW, Katz RT, Yeongchi W (1988) Rehabilitation outcomes in complete C5 quadriplegia. Am J Phys Med Rehabil 76: 73–76CrossRefGoogle Scholar
  23. 23.
    Curt A, Dietz V (1996) Traumatic cervical spinal cord injury: Relation between somatosensory evoked potentials, neurological deficit and hand function. Arch Phys Med Rehabil 77: 48–53PubMedCrossRefGoogle Scholar
  24. 24.
    Li C, Houlden DA, Rowed DW (1990) Somatosensory evoked potentials and neurological grades as predictors of outcome in acute spinal cord injury. J Neurosurg 72: 600–609PubMedCrossRefGoogle Scholar
  25. 25.
    Curt A, Dietz V (1997) Ambulatory capacity in spinal cord injury: Significance of somatosensory evoked potentials and ASIA protocols in predicting outcome. Arch Phys Med Rehabil 78: 39–43PubMedCrossRefGoogle Scholar
  26. 26.
    Deldovici NL, Fowler CJ (1995) Clinical value of the pudendal somatosensory evoked potentials. Electroenceph clin Neurophysiol 96: 509–515CrossRefGoogle Scholar
  27. 27.
    Haldemann S (1984) Dissociation between postrior tibial and pudendal somatosensory evoked responses: possible different central pathways. Neurology (Suppl 1 ) 34: 143Google Scholar
  28. 28.
    Burgio KL, Engel BT, Quilter RE, Arena VC (1991) The relatinship between external anal and external urethral sphincter activity in continent women. Neurourol Urodyn 10: 555–562CrossRefGoogle Scholar
  29. 29.
    Fowler CJ (1992) Clinical significance of electrophysiological studies of patients with lower urinary tract dysfunction. Neurourol Urodyn 11: 279–282CrossRefGoogle Scholar
  30. 30.
    Curt A, Rodic B, Schürch B, Dietz V (1997) Recovery of bladder function in patients with acute spinal cord injury: Significance of ASIA scores and SSEP. Spinal Cord 35: 368–373PubMedCrossRefGoogle Scholar
  31. 31.
    Schurch B, Hauri D, Rodic B, Curt A, Meyer M, Rossier A (1996) Botulinum-A toxin as a treatment of detrusor-sphincter dyssynergia: A prospective study in 24 spinal cord injury patients. J Urol 155: 1023–1029PubMedCrossRefGoogle Scholar
  32. 32.
    Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 185: 227–228CrossRefGoogle Scholar
  33. 33.
    Barker AT, Freestone IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (London) 369: 3Google Scholar
  34. 34.
    Eisen A (1992) Cortical and peripheral nerve magnetic stimulation. Meth clin Neurophys 3: 65–84Google Scholar
  35. 35.
    Katz RT, Van den Berg C, Weinberger D, Cadwell J (1990) Magnetoelectric stimulation of human motor cortex: Normal values and potential safety issues in spinal cord injury. Arch Phys Med Rehabil 71: 597–600PubMedGoogle Scholar
  36. 36.
    Hess CW, Mills KR, Murray NM (1986) Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation. Lancet 2: 355–358PubMedCrossRefGoogle Scholar
  37. 37.
    Maertens-de-Noordhout A, Remade JM, Pepin JL, Born JD, Delwaide PJ (1991) Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology 41: 75–80Google Scholar
  38. 38.
    Curt A, Keck ME, Dietz V (1998) Functional outcome following spinal cord injury: Significance of motor-evoked potentials. Arch Phys Med Rehab 79: 81–86CrossRefGoogle Scholar
  39. 39.
    Macdonell RAL, Donnan GA (1995) Magnetic cortical stimulation in acute spinal cord injury. Neurology 45: 303–306PubMedGoogle Scholar
  40. 40.
    Lewko JP, Tarkka IM, Dimitrijevic MR (1995) Neurophysiological assessment of the motor and sensory spinal pathways in chronic spinal cord injury. Restor Neurol Neurosci 7: 225–234PubMedGoogle Scholar
  41. 41.
    Hirayama T, Tsubokawa R, Maejima S, Yamamoto T, Kataryama Y (1991) Clinical assessment of the prognosis and severity of spinal cord injury using corticospinal motor evoked potentials. In: Shimoji K, Kurokawa T, Tamaki T, Willis WD (eds) Spinal Cord Monitoring and Electrodiagnosis. Springer, Heidelberg, S 503–510CrossRefGoogle Scholar
  42. 42.
    Meyer BU, Britton TC, Benecke R, Bischoff C, Machetanz J, Conrad B (1992) Motor responses evoked by magnetic brain stimulation in psychogenic limb weakness: Diagnostic value and limitations. J Neurol 239: 251–255PubMedGoogle Scholar
  43. 43.
    Brandstater ME, Dinsdale SM (1976) Electrophysiological studies in the assessment of spinal cord lesions. Arch Phys Med Rehabil 57: 70–74PubMedGoogle Scholar
  44. 44.
    Curt A, Dietz V (1996) Neurographic assessment of intramedullar motoneurone lesions in cervical spinal cord injury: Consequences for hand function. Spinal Cord 4: 326–332CrossRefGoogle Scholar
  45. 45.
    Curt A, Dietz V (1996) Nerve conduction study in cervical spinal cord injury: Significance for hand function. NeuroRehabil 7: 165–173CrossRefGoogle Scholar
  46. 46.
    Blaik Z, Mc Garry J, Daura R (1989) Peripheral neuropathy in spinal injured patients. Electromyogr clin Neurophysiol 29: 469–472PubMedGoogle Scholar
  47. 47.
    Hall M (1843) New Memoir on the Nervous System. H. Bailliere, LondonGoogle Scholar
  48. 48.
    Rossier AB, Fam BA, Dibenedetto M, Sarkaratti M (1979) Urodynamics in spinal shock. Urol Res 122: 783–787Google Scholar
  49. 49.
    Lucas MG, Thomas DG (1989) Lack of relationship on conus reflexes to bladder function after spinal cord injury. Br J Urol 63: 24–27PubMedCrossRefGoogle Scholar
  50. 50.
    Tackmann W, Porst H (1987) Diagnostik neurogener Potenzstörungen mit Hilfe des Bulbocavernosus-Reflexes and somatosensorisch evozierter Potentiale nach Stimulation des N. pudendus. Nervenarzt 58: 292–299Google Scholar
  51. 51.
    Ashby P, Verrier M, Lightfoot E (1974) Segmental reflex pathway in spinal shock and spinal spasticity in man. J Neurol Neurosurg Psychiat 37: 1352–1360PubMedCrossRefGoogle Scholar
  52. 52.
    Diamantopoulos E, Zander OP (1967) Exitability of motor neurones in spinal shock in man. J Neurol Neurosurg Psychiat 30: 427–431PubMedCrossRefGoogle Scholar
  53. 53.
    Little JW, Halar EM (1985) H-reflex changes following spinal cord injury. Arch Phys Med Rehabil 66: 19–22PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2003

Authors and Affiliations

  • A. Curt
    • 1
  • V. Dietz
    • 1
  1. 1.ParaCareUniversitätsklinik BalgristZürichSchweiz

Personalised recommendations