Bedeutung von Magnetresonanzverfahren in der Kardiologie

  • S. Neubauer

Zusammenfassung

Zur Zeit spielen Magnetresonanzverfahren in der kardiologischen Diagnostik eine untergeordnete Rolle. Aktuelle Fortschritte in der MR-Technologie, insbesondere Methoden der schnellen MR-Bildgebung, sollten es aber erlauben, MR-Verfahren für einen breiten dignostischen Einsatz bei koronarer Herzkrankheit, Herzinsuffizienz und Herzklappenfehlern zu entwickeln. Myokardiale Volumina und Masse können mit größter Genauigkeit bestimmt und die Myokardperfusion mit hoher, klinisch relevanter räumlicher Auflösung gemessen werden. Die Entwicklung einer hochauflösenden MR Koronarangiographie scheint möglich, technische Weiterentwicklungen sind allerdings notwendig. Die MR-Spektroskopie erlaubt die Analyse verschiedener Aspekte des myokardialen Stoffwechsels. Wenngleich erhebliche technische Anforderungen gemeistert werden müssen, besitzen MR-Verfahren das Potential in der Zukunft die Diagnostik von Herzkrankheiten radikal zu verändern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101: 1379–83PubMedGoogle Scholar
  2. 2.
    Auffermann W, Wichter T, Breithardt G, Joachimsen K, Peters PE (1993) Arrhythmogenic right ventricular disease: MR imaging vs angiography. AJR Am J Röntgenol 161: 549–55Google Scholar
  3. 3.
    Aurigemma G, Reichek N, Schiebler M, Axel L (1990) Evaluation of mitral regurgitation by cine magnetic resonance imaging. Am J Cardiol 66: 621–5PubMedCrossRefGoogle Scholar
  4. 4.
    Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171: 841–5PubMedGoogle Scholar
  5. 5.
    Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91: 1006–15PubMedGoogle Scholar
  6. 6.
    Bauer WR, Roder F, Hiller KH, Haase A, Ertl G (1997) Räumlich hochaufgelöste Messung der myokardialen Perfusion mittels schichtselektiver T1-Bestimmung am isolierten Rattenherzen: Eine neue, ohne Kontrastmittel arbeitende NMR Methode (Abstract). Z Kardiol 86 (suppl 2): 300Google Scholar
  7. 7.
    Bellenger NG, Davies LC, Francis JM, Marcus NJ, Pennell DJ (2000) Reduction in sample size for studies of remodelling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2: 271–8PubMedCrossRefGoogle Scholar
  8. 8.
    Bellenger NG, Grothues F, Smith GC, Pennell DJ (2000) Quantification of right and left ventricular function by cardiovascular magnetic resonance (in process citation). Herz 25: 392–9PubMedCrossRefGoogle Scholar
  9. 9.
    Bottomley PA (1994) MR spectroscopy of the human heart: the status and the challenges. Radiology 191: 593–612PubMedGoogle Scholar
  10. 10.
    Clarke GD, Eckels R, Chaney C, Smith D, Dittrich J, Hundley WG, Ness Aiver M, Li HF, Parkey RW, Peshock RM (1995) Measurement of absolute epicardial coronary artery flow and flow reserve with breath-hold cine phas-contrast magnetic resonance imaging. Circulation 91: 2627–34PubMedGoogle Scholar
  11. 11.
    Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338: 973–6PubMedCrossRefGoogle Scholar
  12. 12.
    Conway MA, Bottomley PA, Ouwerkerk R, Radda GK, Rajagopalan B (1998) Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans. Circulation 97: 1716–23PubMedGoogle Scholar
  13. 13.
    Danias PG, Manning WJ (2000) Coronary MR angiography: current status (in process citation). Herz 25: 431–9PubMedCrossRefGoogle Scholar
  14. 14.
    Duerinckx AJ (1995) MR angiography of the coronary arteries. Top Magn Reson Imaging 7: 267–85PubMedCrossRefGoogle Scholar
  15. 15.
    Edelman RR, Manning WJ, Gervino E, Li W (1993) Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography. J Magn Reson Imaging 3: 699–703PubMedCrossRefGoogle Scholar
  16. 16.
    Fayad ZA, Fuster V (2000) Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 902: 173–86PubMedCrossRefGoogle Scholar
  17. 17.
    Florentine MS, Großkreutz CL, Chang W, Hartnett JA, Dunn VD, Ehrhardt JC, Fleagle SR, Collins SM, Marcus ML, Skorton DJ (1986) Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging. J Am Coll Cardiol 8: 107–12PubMedCrossRefGoogle Scholar
  18. 18.
    Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122: 795–801PubMedCrossRefGoogle Scholar
  19. 19.
    Hirsch R, Kilner PJ, Connelly MS, Redington AN, St John Sutton MG, Somerville J (1994) Diagnosis in adolescents and adults with congenital heart disease. Prospective assessment of individual and combined roles of magnetic resonance imaging and transesophageal echocardiography. Circulation 90: 2937–51PubMedGoogle Scholar
  20. 20.
    Hoppe U, Dederichs B, Deutsch HJ, Theissen P, Schicha H, Sechtem U (1996) Congenital heart disease in adults and adolescents: comparative value of transthoracic and transesophageal echocardiography and MR imaging. Radiology 199: 669–77PubMedGoogle Scholar
  21. 21.
    Horn M, Weidensteiner C, Lanz T, Neubauer S, von Kienlin M (1998) Myocardial Na+ content after infarction during scar development. MAGMA 6: 179–80PubMedCrossRefGoogle Scholar
  22. 22.
    Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, Applegate RJ, Thomas MS, Payne J, Link KM, Peshock RM (1999) Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 99: 3248–54PubMedGoogle Scholar
  23. 23.
    Hundley WG, Lange RA, Clarke GD, Meshack BM, Payne J, Landau C, McColl R, Sayad DE, Willet DL, Willard JE, Hillis LD, Peshock RM (1996) Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 93: 1502–1508PubMedGoogle Scholar
  24. 24.
    Ingwall JS (1982) Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 242: H729–44PubMedGoogle Scholar
  25. 25.
    Kilner PJ, Manzara CC, Mohiaddin RH, Pennell DJ, Sutton MG, Firmin DN, Underwood SR, Longmore DB (1993) Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 87: 1239–48PubMedGoogle Scholar
  26. 26.
    Kreitner KF, Voigtlander T, Wittlinger T, Dahm M, Kalden P, Meyer J, Thelen M (2000) Flow quantification in coronary and bypass vessels with MR phase contrast technique. Radiologe 40: 143–9PubMedCrossRefGoogle Scholar
  27. 27.
    Lund JT, Ehman RL, Julsrud PR, Sinak LI, Tajik AJ (1989) Cardiac masses: assessment by MR imaging. AJR Am J Röntgenol 152: 469–73Google Scholar
  28. 28.
    Manning WJ, Edelman RR (1993) Magnetic resonance coronary angiography. Magn Reson Q 9: 131–51PubMedGoogle Scholar
  29. 29.
    Markl M, Schneider B, Hennig J, Peschl S, Winterer J, Krause T, Laubenberger J (1999) Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients. Int J Card Imaging 15: 441–52PubMedCrossRefGoogle Scholar
  30. 30.
    Matter C, Nagel E, Stuber M, Boesiger P, Hess OM (1996) Assessment of left ventricular systolic and diastolic function with magnetic resonance myocardial tagging. Basic Res Cardiol 91 (suppl 2): 23–28PubMedCrossRefGoogle Scholar
  31. 31.
    Mogelvang J, Lindvig K, Sondergaard L, Saunamaki K, Henriksen O (1993) Reproducibility of cardiac volume measurements including left ventricular mass determined by MRI. Clin Physiol 13: 587–97PubMedCrossRefGoogle Scholar
  32. 32.
    Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99: 763–70PubMedGoogle Scholar
  33. 33.
    Nagel E, Stuber M, Matter C, Lakatos M, Boesiger P, Hess OM (1996) Rotational and translational motion after myocardial infarction. J Cardiovasc Pharmacol 28 (suppl 2): 31–35Google Scholar
  34. 34.
    Neubauer S, Ertl G, Krahe T, Schindler R, Hillenbrand H, Lackner K, Kochsiek K (1991) Experimental and clinical possibilities of MR spectroscopy of the heart. Z Kardiol 80: 25–36PubMedGoogle Scholar
  35. 35.
    Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall IS (1988) Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63: 1–15PubMedGoogle Scholar
  36. 36.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall IS, Kochsiek K (1997) In patients with dilated cardiomyopathy the myocardial phosphocreatine-to-ATP ratio is a predictor of mortality. Circulation 96: 2190–2196PubMedGoogle Scholar
  37. 37.
    Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS et al. (1995) Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 95: 1092–100PubMedCrossRefGoogle Scholar
  38. 38.
    Neubauer S, Horn M, Pabst T, Harre K, Strömer H, Bertsch G, Sandstede J, Ertl G, Hahn D, Kochsiek K (1997) Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. J Investig Med 45: 453–462PubMedGoogle Scholar
  39. 39.
    Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K, Ertl G (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86: 1810–8PubMedGoogle Scholar
  40. 40.
    Nienaber CA, von Kodolitsch Y, Nicolas V, Siglow V, Piepho A, Brockhoff C, Koschyk DH, Spielmann RP (1993) The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 328: 1–9PubMedCrossRefGoogle Scholar
  41. 41.
    Nienaber CA, von Kodolitsch Y, Petersen B, Loose R, Heimchen U, Haverich A, Spielmann RP (1995) Intramural hemorrhage of the thoracic aorta. Diagnostic and therapeutic implications. Circulation 92: 1465–72PubMedGoogle Scholar
  42. 42.
    Nixdorff U, Mohr-Kahaly S, Wagner S, Meyer J (1997) Klinischer Stellenwert der Stressechokardiographie. Deutsches Ärzteblatt 94 (25): 1376–1381Google Scholar
  43. 43.
    Park JH, Han MC, Im JG, Oh BH, Lee YW (1990) Mitral stenosis: evaluation with MR imaging after percutaneous balloon valvuloplasty. Radiology 177: 533–6PubMedGoogle Scholar
  44. 44.
    Pennell DJ, Bogren HG, Keegan J, Firmin DN, Underwood SR (1996) Assessment of coronary artery stenosis by magnetic resonance imaging. Heart 75: 127–133PubMedCrossRefGoogle Scholar
  45. 45.
    Pennell DJ, Underwood SR, Manzara CC, Swanton RH, Walker JM, Ell PJ, Longmore DB (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70: 34–40PubMedCrossRefGoogle Scholar
  46. 46.
    Pohost GM (1995) Is 31P-NMR spectroscopic imaging a viable approach to assess myocardial viability? Circulation 92: 9–10PubMedGoogle Scholar
  47. 47.
    Post JC, van Rossum AC, Bronzwaer JG, de Cock CC, Hofman MB, Valk J, Visser CA (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92: 3163–71PubMedGoogle Scholar
  48. 48.
    Radda GK (1992) Control, bioenergetics, and adaptation in health and disease: noninvasive biochemistry from nuclear magnetic resonance. FASEB J 6: 3032–8PubMedGoogle Scholar
  49. 49.
    Sandstede J, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D (1997) Three-dimensional MR coronary angiography in navigator-technique and postprocessing using volume-rendering technique: comparison with conventional angiography (Abstract). ESMRMB (in press)Google Scholar
  50. 50.
    Schwitter J, von Schulthess G (2000) MR perfusion imaging: correlation with PET and quantitative angiography. MAGMA 11: 71–2PubMedCrossRefGoogle Scholar
  51. 51.
    Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163: 697–702PubMedGoogle Scholar
  52. 52.
    Shapiro EP, Rogers WJ, Beyar R, Soulen RL, Zerhouni EA, Lima JA, Weiss JL (1989) Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 79: 706–11PubMedCrossRefGoogle Scholar
  53. 53.
    Sieverding L, Jung WI, Fleiter TH, Klose U, Steil E, Hassberg D, Rosendahl W (1992) Progress and change in nuclear magnetic resonance diagnosis of congenital and acquired heart defects. Klin Padiatr 204: 340–7PubMedCrossRefGoogle Scholar
  54. 54.
    Taylor AM, Thorne SA, Rubens MB, Jhooti P, Keegan J, Gatehouse PD, Wiesmann F, Grothues F, Somerville J, Pennell DJ (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation 101: 1670–8PubMedGoogle Scholar
  55. 55.
    Toussaint JF (1998) Atherosclerotic plaque assessment by NMR. MAGMA 6: 135–136PubMedCrossRefGoogle Scholar
  56. 56.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323: 1593–600PubMedCrossRefGoogle Scholar
  57. 57.
    Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, Ugurbil K, McDonald K, Wilson RF (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR Imaging. Radiology 204: 373–384PubMedGoogle Scholar
  58. 58.
    Wilke N, Simm C, Zhang J, Ellermann J, Ya X, Merkle H, Path G, Ludemann H, Bache RJ, Ugurbil K (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29: 485–97PubMedCrossRefGoogle Scholar
  59. 59.
    Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 92: 15–23PubMedGoogle Scholar
  60. 60.
    Yamaoka O, Yabe T, Okada M, Endoh S, Nakamura Y, Mitsunami K, Kinoshita M, Mori M, Murata K, Morita R (1993) Evaluation of left ventricular mass: comparison of ultrafast computed tomography, magnetic resonance imaging, and contrast left ventriculography. Am Heart J 126: 1372–9PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2001

Authors and Affiliations

  • S. Neubauer
    • 1
  1. 1.Department of Cardiovascular MedicineJohn Radcliffe Hospital, Oxford UniversityOxfordEngland

Personalised recommendations