Skip to main content

Messung der Koronardurchblutung

  • Chapter
Kardiovaskuläre Forschung 2000

Zusammenfassung

Die Koronardurchblutung ist seit den Anfängen einer naturwissenschaftlichen Medizin und bis in die weitere Zukunft ein wichtiger Messparameter sowohl der experimentellen als auch der klinischen Medizin. Dies beruht einerseits auf ihrer kritischen Rolle für die Funktion des Herzens und damit des Gesamtorganismus; andererseits ist die koronare Herzerkrankung häufig, der Koronarbefall und damit die Durchblutungsminderung meist regional, und stellt ein diagnostisches Alltagsproblem dar. Die Erforschung der Besonderheiten des Koronarkreislaufs unter physiologischen und pathophysiologischen Bedingungen sowie die klinische Einschätzung einer Mangeldurchblutung des Herzens machen exakte Methoden zur Messung der Koronardurchblutung mit hohem zeitlichen und/oder räumlichen Auflösungsvermögen notwendig. Die Quantifizierung der Koronarperfusion ist jedoch bis heute schwierig, und nach wie vor gibt es verschiedenste Ansätze, sowohl im Tierexperiment als auch bei Patienten, die koronare Durchblutung zu messen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bauer WR, Hiller KH, Neubauer S, Roder F, Haase A, Ertl G (2001) Fast high resolution imaging demonstrates fractality of myocardial perfusion in microscopic dimensions. Circ Res 88: 340–346

    PubMed  CAS  Google Scholar 

  2. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) Theory of the BOLD effect in the capillary region: an analytical approach for the determination of T2* in the capillary network of myocardium. Magn Reson Med 41: 51–62

    Article  PubMed  CAS  Google Scholar 

  3. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) Theory of coherent and incoherent nuclear spin dephasing in the heart. Phys Rev Letters 83 (20): 4215–4218

    Article  CAS  Google Scholar 

  4. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) The relationship between T2* and T2 in myocardium. Magn Reson Med 41: 1004–1010

    Article  Google Scholar 

  5. Bauer WR, Roder F, Hiller KH, Han H, Rommel E, Haase A, Ertl G (1997) The effect of perfusion on T1 after slice selective spin inversion in the isolated cardioplegic rat heart: measurement of a lower bound of intracapillary-extravascular water proton exchange. Magn Reson Med 38 (6): 917–923

    Article  PubMed  CAS  Google Scholar 

  6. Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43: 92–101

    PubMed  CAS  Google Scholar 

  7. Berne RM (1958) Effect of epinephrine and norepinephrine on coronary circulation. Circ Res 6: 644

    PubMed  CAS  Google Scholar 

  8. Bretschneider HJ (1961) Temperatur-and viscoseunabhängige Messung von Perfusionsvolumina. Langenbecks Arch Chir 298: 774

    Article  PubMed  CAS  Google Scholar 

  9. Eckenhoff JE, Haflcenschiel JH, Harmel MH, Goodale WT, Lubin M, Bing RJ, Kety SS (1948) Measurement of coronary blood flow by the nitrous oxide method. Am J Physiol 152: 356

    PubMed  CAS  Google Scholar 

  10. Ertl G (2000) Störungen der Koronardurchblutung. In: Fölsch, Kochsiek, Schmidt: Pathophysiologie. Springer-Verlag, Berlin, Heidelberg, S. 113–124

    Google Scholar 

  11. Ertl G, Fuchs M, Oswald S, Wichmann J, Lochner W (1982) Influence of the ischemic coronary bed on collateral blood flow. Basic Res Cardiol 77: 520–535

    Article  PubMed  CAS  Google Scholar 

  12. Ertl G, Kloner RA, Alexander RW, Braunwald E (1982) Limitation of experimental infarct size by angiotensin-converting enzyme inhibitor. Circulation 65: 40–48

    Article  PubMed  CAS  Google Scholar 

  13. Ertl G, Meesmann M, Krumpiegel K, Kochsiek K (1987) The effects of atrial fibrillation on coronary blood flow and performance of ischaemic myocardium in dogs with coronary artery stenosis. Clin Sci 73: 437–444

    PubMed  CAS  Google Scholar 

  14. Ertl G, Simm F, Wichmann J, Fuchs M, Lochner W (1979) The dependence of coronary collateral blood flow on regional vascular resistances: pharmacological studies with glyeryl trinitate, adenosine and verapamil. Naunyn Schmiedebergs Arch Pharmacol 308: 265–272

    Article  PubMed  CAS  Google Scholar 

  15. Faber L, Seggewiss H, Gleichmann U (1998) Percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: results with respect to intraprocedural myocardial contrast echocardiography. Circulation 98 (22): 2415–2421

    PubMed  CAS  Google Scholar 

  16. Ganz V, Fronèk A (1960) 3rd European Congess of Cardiology, Roma, Pars Altera: 707

    Google Scholar 

  17. Gregg DE, Pritchard WH, Shipley RE, Wearn JT (1943) Augmentation of blood flow in the coronary arteries with elevation of right ventricular pressure. Am J Physiol 139: 726

    Google Scholar 

  18. Gregg DE, Sabiston DC (1956) Current research and problems of the coronary circulation. Circulation 13: 916

    PubMed  CAS  Google Scholar 

  19. Gregg DE, Shipley RE (1944) Augmentation of left coronary inflow with elevation of left ventricular pressure and observations on the mechanism for increased coronary inflow with increased cardiac load. Am J Physiol 142: 44

    Google Scholar 

  20. Heubner W, Mancke R (1935) In: Abderhalden’s Handbuch der biologischen Arbeitsmethoden. Urban & Schwarzenberg, Berlin Wien, S 885

    Google Scholar 

  21. Hiller KH, Adami P, Voll S, Roder F, Kowallik P, Bauer WR, Haase A, Ertl G (1996) In vivo colored microspheres in the isolated rat heart for use in NMR. J Mol Cell Cardiol 28: 571–577

    Article  PubMed  CAS  Google Scholar 

  22. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143: 53

    CAS  Google Scholar 

  23. Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple coloured microspheres. Circulation 83: 974–982

    PubMed  CAS  Google Scholar 

  24. Langendorff O (1895) Untersuchungen am überlebenden Säugetierherzen. Pflugers Arch 61: 291

    Article  Google Scholar 

  25. Lochner W (1964) Proc 3rd Asian-Pacific Congress of Cardiology, Kyoto 1: 661

    Google Scholar 

  26. Lu FC, Allmark MG, Carmichael EJ, MacMillan DB, Lavallee A (1953) The assay of some coronary dilator drugs in isolated mammalian hearts and dog hearts in situ. J Pharm Pharmacol 5: 94

    Article  PubMed  CAS  Google Scholar 

  27. Lu FC, Melville KI (1950) A new apparatus and procedure for continuous registration of changes in coronary flow concurrently with changes in heart contractions. J Pharmacol Exp Ther 99: 277

    PubMed  CAS  Google Scholar 

  28. Melville KI, Mazurkiewicz I (1956) Actions of potassium and calcium on coronary flow and heart contractions with special reference to the responses to epinephrine and norepinephrine. J Pharmacol Exp Ther 118: 249

    PubMed  CAS  Google Scholar 

  29. Morawitz P, Zahn A (1912) Über den Koronarkreislauf am Herzen in situ. Zentalbl Physiol 26: 465

    Google Scholar 

  30. Neubauer S, Ertl G, Haas U, Pulzer F, Kochsiek K (1990) Effects of Endothelin-1 in isolated perfused rat heart. J Cardiovasc Pharmacol 16: 1–8

    Article  PubMed  CAS  Google Scholar 

  31. Pieper HP (1964) Catheter-tip flowmeter for coronary arterial flow in closed-chest dogs. J Appl Physiol 19: 1199

    PubMed  CAS  Google Scholar 

  32. Porter WT (1898) A new method for the study of the isolated mammalian heart. Am J Physiol 1: 511

    Google Scholar 

  33. Porter TR, Li S, Krisfeld D, Armbruster RW (1997) Detection of myocardial perfusion in multiple echocardiographic windows with one intravenous injection of microbubbles using tranient response second harmonic imaging. J Am Coll Cardiol 29 (4): 791–799

    Article  PubMed  CAS  Google Scholar 

  34. Rodbard S, Graham GR, Williams F (1953) Continuous and simultaneous measurement of total coronary flow, venous return and cardiac output in the dog. J Appl Physiol 6: 311

    PubMed  CAS  Google Scholar 

  35. Schanzenbächer P, Liebau G, Deeg P, Kochsiek K (1983) Effect of intravenous and intracoronary nifedipine on coronary blood flow and myocardial oxygen consumption. Am J Cardiol 51: 712–717

    Article  PubMed  Google Scholar 

  36. Stehle RL (1932) A method for studying variations in coronary inflow during a series of cardiac cycles, or for determining inflow rates generally. J Pharmacol Exp Ther 46: 471

    Google Scholar 

  37. Tiemann K, Lohmeier S, Kuntz S, Köster J, Pohl C, Burns PN, Poter TR, Nanda NC, Luderitz B, Becher H (1999) Real time contrast echo assessment of myocardial perfusion at low emission power; first experimental and clinical results using power pusle inversion imaging. Echocardiography 16 (8): 799–809

    Article  PubMed  Google Scholar 

  38. Uhlmann F, Nobile F (1938) Verbesserte Versuchsanordnung für Arbeiten mit dem isolierten Säugetierherzen. Arch Exp Pathol Pharmakol 192: 189

    Google Scholar 

  39. Wacker CM, Bock M, Hartlep AW, Beck G, van Kaick G, Ertl G, Bauer WR, Schad LR (1999) Noninvasive assessment of myocardial oxygenation and perfusion in humans without exogenous contrast agents using T2* and T1. Magn Reson Med 41 (4): 686–695

    Article  PubMed  CAS  Google Scholar 

  40. Wacker CM, Bock M, Hartlep A, Bauer WR, van Kaick G, Pfleger S, Ertl G, Schad LR (1999) BOLD MRI in 10 patients with coronary artery disease: evidence for imaging of capillary recruitment in myocardium supplied by a stenotic artery. MAGMA 8: 48

    PubMed  CAS  Google Scholar 

  41. Waller C, Belle V, Rommel E, Hiller KH, Voll S, Hu K, Schnackertz KD, Haase A, Ertl G, Bauer WR (2000) Assessment of myocardial perfusion and intracapillaryblood volume in intact rats at rest and coronary dilation: combination of a non contrast agent and contrast agent dependent NMR-imaging technique. Radiology 215: 189–197

    PubMed  CAS  Google Scholar 

  42. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultra sound induced destruction of microbubbles administered as a constant venous infusion. Circulation 97 (5): 473–483

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

Ertl, G., Bauer, W., Schanzenbächer, P. (2001). Messung der Koronardurchblutung. In: Ertl, G. (eds) Kardiovaskuläre Forschung 2000. Steinkopff. https://doi.org/10.1007/978-3-642-93722-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93722-4_1

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1308-2

  • Online ISBN: 978-3-642-93722-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics