Pharmakodynamik der Calciumantagonisten

  • H. A. Tritthart

Zusammenfassung

Transsarkolemnale Ca2+-Einströme spielen die Schlüsselrolle in der elektromechanischen Koppelung der Herzmuskulatur und der glatten Muskulatur. Diese Ca2+ -Ströme tragen wesentlich zu den transmembranären Strömen bei, die Aktionspotentiale auslösen (Impulsbildung) oder sie durch Myokardabschnitte mit langsamer Erregungsausbreitung leiten (SA, AV-Leitung). Auch für die elektrische Aktivität glatter Muskelzellen sind Ca2+-Einströme von entscheidender Wichtigkeit. Die Einführung von Ca2+ -Einstrom-hemmenden Verbindungen durch Fleckenstein eröffnete das Verständnis der Ca2+-Abhängigkeit vieler physiologischer und pathophysiologischer Prozesse, vor allem bei Herzkreislauferkrankungen. Dies schuf neue therapeutische Wege, die mit großem klinischen Erfolg begangen wurden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aaronson PI, Benham CD, Bolton TB, Hess P, Lang RJ, Tsien RW (1986) Two types of single-channel and whole-cell calcium or barium currents in single smooth muscle cells of rabbit ear artery and the effects of noradrenaline. J Physiol 377: 36Google Scholar
  2. 2.
    Agus ZS, Kelepouris E, Dukes I, Morad M (1989) Cytosolic magnesium modulates Calcium channel activity in mammalian ventricular cells. Am J Physiol 256: C452–C455PubMedGoogle Scholar
  3. 3.
    Baeyens JM (1988) Interactions between calcium channel blockers and noncardiovascular drugs: Interaction with anticancer drugs. Pharmacol Toxicol 63: 1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J Gen Physiol 86: 1–30PubMedCrossRefGoogle Scholar
  5. 5.
    Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51: 367384Google Scholar
  6. 6.
    Benham CD, Tsien RW (1988) Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol 404: 767–784PubMedGoogle Scholar
  7. 7.
    Callewaert G, Hanbauer I, Morad M (1989) Modulation of calcium channels in cardiac and neuronal cells by an endogenous peptide. Science 243: 663–666PubMedCrossRefGoogle Scholar
  8. 8.
    Chatelain P, Demol D, Roba J (1984) Comparison of H3-nitrendipine binding to heart membranes of normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 6: 220–223PubMedCrossRefGoogle Scholar
  9. 9.
    Chen C, Corbley MJ, Roberts TM, Hess P (1988) Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239: 1024–1026PubMedCrossRefGoogle Scholar
  10. 10.
    Dale J, Landmark K, Myhre E (1983) The effects of nifedipine, a calcium antagonist, on platelet function. Am Heart J 105: 103–105PubMedCrossRefGoogle Scholar
  11. 11.
    Eichstädt H, Danne O, Gutmann M, Langer M, Felix R, Schmutzler H (1988) Microperfusion in Coronary Artery Disease under Treatment with the Calcium Antagonist Gallopamil. Arzneimittelf 38 (I)/ 5: 700–703Google Scholar
  12. 12.
    Eschenhagen T (1993) G Proteins and the Heart. Cell Biol Int Rep 17 (8): 723–749Google Scholar
  13. 13.
    Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibers. J Physiol 120: 171–204PubMedGoogle Scholar
  14. 14.
    Ferlinz J (1981) Effects of verapamil on normal and abnormal ventricular functions in patients with ischemic heart disease. In: Zanchetti A (ed) Calcium Antagonism in Cardiovascular Therapy. Excerpta Medica, Amsterdam, pp 92–105Google Scholar
  15. 15.
    Finkel MS, Patterson RE, Roberts WC, Smith TD, Keiser HR (1988) Calcium channel binding characteristics in the human heart. Am J Cardiol 62: 1281–1284PubMedCrossRefGoogle Scholar
  16. 16.
    Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate für Kontraktilität and Tonus des Myokards. Verh Dtsch Ges Inn Med 70: 81–89PubMedGoogle Scholar
  17. 17.
    Fleckenstein A (1971) Specific inhibitors and promotors of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention of production of myocardial lesions. In: Harris P, Opie L (eds) Calcium and the Heart. Academic Press, New York, pp 135–188Google Scholar
  18. 18.
    Fleckenstein A (1983) Calcium Antagonism in Heart and Smooth Muscle. Experimental Facts and Therapeutic Prospects. John Wiley, New YorkGoogle Scholar
  19. 19.
    Fleckenstein A, Döring HJ, Kammereier H, Grün G (1968) Influence of prenylamine on the utilization of high energy phosphates in cardiac muscle. Biochim Applic 14 (Suppl 1 ): 323344Google Scholar
  20. 20.
    Fleckenstein A, Kammermeier H, Döring HJ, Freund HJ (1967) Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myokardeffekten, Prenylamin and Iproveratril. Z Kreisl-Forsch 56: 716–744Google Scholar
  21. 21.
    Fleckenstein A, Tritthart HA, Döring HJ, Byon YK (1972) BAY a 1040 — ein hochaktiver Cat+-antagonistischer Inhibitor der elektromechanischen Kopplungsprozesse im Warmblüter-Myokard. Arzneimittelf 22: 22–33Google Scholar
  22. 22.
    Fleckenstein A, Tritthart HA, Fleckenstein B, Herbst A, Grün G (1969) A new group of competitive Ca-antagonists (Iproveratril, D600, Prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium. Pflüg Arch Eur J Phy 307: 25Google Scholar
  23. 23.
    Fleckenstein-Grün G, Fleckenstein A (1983) Blockierung der Ca’ -abhängigen bioelektrischen Automatic und elektromechanischen Koppelung glatter Muskelzellen durch Gallopamil (D 600). In: Kaltenbach M, Hopf R (Hrsg) Gallopamil. Springer, Berlin, Heidelberg, New York, Tokyo, S 35–51Google Scholar
  24. 24.
    Fleming JW, Wisler PL, Watanabe AM (1992) Signal transduction by G proteins on cardiac tissues. Circulation 85: 420–433PubMedGoogle Scholar
  25. 25.
    Fox AP, Hirning LD, Mogul DJ, Artalejo CR, Penington NJ, Scroggs RS, Miller RJ (1991) Modulation of calcium channels by neurotransmitters, hormones and second messengers. In: Hurwitz L et al. (eds) Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance. CRC Press, Boca Raton, FL, pp 251–263Google Scholar
  26. 26.
    Garthoff B, Bellemann P (1987) Effects of salt loading and nitrendipine on dihydropyridine receptors in hypertensive rats. J Cardiovasc Pharm 10 (Suppl 10): 36–39Google Scholar
  27. 27.
    Grün G, Fleckenstein A, Byon YK (1972) Blockierung der Ca’-Effekte auf Tonus und Autoregulation der glatten Gefäßmuskulatur durch Calciumantagonisten (Verapamil, D600, Prenylamin, Bay a 1040 u.a.). In: Betz E (ed) Vascular Smooth Muscle, Proceedings of the 25th International Congress of International Union Physiological Sciences. Springer, Berlin, pp 69–70Google Scholar
  28. 28.
    Grün G, Fleckenstein A, Tritthart HA (1969) Excitation-contraction uncoupling on the rats uterus by some „musculotropic“ smooth muscle relaxants. Pflüg Arch Eur J Phy 264: 239Google Scholar
  29. 29.
    Guelker H, Haverkamp W, Hindricks G, Bender F (1987) Calcium antagonists and acute myocardial ischemia. Cardiovasc Drugs Ther 1 (4): 367–376CrossRefGoogle Scholar
  30. 30.
    Hagiwara S, Irisawa H, Kameyama M (1988): Contribution of two types of calcium channels to the pacemaker potentials of rabbit sino atrial node cells. J Physiol 395: 233–253PubMedGoogle Scholar
  31. 31.
    Hallström S, Koidl B, Muller U, Werdan K, Schlag G (1991) A cardiodepressant factor isolated from blood blocks Cat+ current in cardiomyocytes. Am J Physiol 260: H869–H876PubMedGoogle Scholar
  32. 32.
    Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+-channels. Science 258: 1152–1155PubMedCrossRefGoogle Scholar
  33. 33.
    Hering S, Bolton TB, Beech DJ, Lin SP (1989) Mechanisms of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery. Circ Res 64 (5): 928–936PubMedGoogle Scholar
  34. 34.
    Hess P (1990) Calcium channels in vertebrate cells. Annu Rev Neurosci 13: 337–356PubMedCrossRefGoogle Scholar
  35. 35.
    Hiramatsu K, Yamagishi F, Kubota T, Yamada T (1982) Acute effects of the calcium antagonist, nifedipine, on blood pressure, pulse rate and the renin-angiotensin-aldosterone system in patients with essential hypertension. Am Heart J 104: 1346–1350PubMedCrossRefGoogle Scholar
  36. 36.
    Hollingsworth M, Edwards D, Donnai P (1987) Inhibition of contractions of the isolated pregnant human myometrium by calcium entry blockers. Medical Science Research 15 (1): 15–16Google Scholar
  37. 37.
    Hosey MM, Lazdunski M (1988) Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 104: 81–105PubMedCrossRefGoogle Scholar
  38. 38.
    Janis RA, Silver P, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16: 309–591Google Scholar
  39. 39.
    Janke J, Fleckenstein A, Jaedike W (1970) Hemmung der Isoproterenol-induzierten Ca’— 45 Netto-Aufnahme in das Ventrikelmyokard durch Ca’ -antagonistische Hemmstoffe der elektromechanischen Koppelung (Isoptin, Verapamil, Iproveratril und Substanz D600). Pflug Arch Eur J Phy 316: 10Google Scholar
  40. 40.
    Kanaya S, Katzung BG (1981) Rate-and voltage-dependent block of slow responses and calcium current by diltiazem. Circulation 64 (4, II):IV274Google Scholar
  41. 41.
    Kass RS (1987) Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K8644. Implications for channel gating. Circ Res 61: 11–15Google Scholar
  42. 42.
    Kimura E, Kishida H (1981) Treatment of variant angina with drugs. A survey of 11 cardiology institutes in Japan. Circulation 63: 844–848PubMedCrossRefGoogle Scholar
  43. 43.
    Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) Differentiation of the transmembrane Na-and Ca-channel in mammalian cardiac fibres by the use of specific inhibitors. Pflug Arch Eur J Phy 335: 309–322CrossRefGoogle Scholar
  44. 44.
    Kostyuk PG (1989) Diversity of calcium ion channels in cellular membranes. Neuroscience 28: 253–261PubMedCrossRefGoogle Scholar
  45. 45.
    Kuga T, Sadoshima J, Tomoike H, Kanaide N, Nakamura M (1990) Action of Ca’ antagonists on two types of Ca’ channels in rat aorta smooth muscle cells in primary culture. Circ Res 67: 469–480PubMedGoogle Scholar
  46. 46.
    Lansman JB, Hess P, Tsien RW (1986) Blockage of current through single calcium channels by cadmium, magnesium and calcium. J Gen Physiol 88: 321–347PubMedCrossRefGoogle Scholar
  47. 47.
    Martin SK, Oduola AM, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falziparum by verapamil. Science 235: 899–901PubMedCrossRefGoogle Scholar
  48. 48.
    McCobb DP, Best PM, Beam KG: Development alters the expression of calcium currents in chick limb motoneurons. Neuron 2:1633–1643Google Scholar
  49. 49.
    Metzger H, Stern HO, Pfitzer GU, Ruegg JC (1982) Calcium antagonists affect calmodulindependent contractility of a skinned smooth muscle. Arzneimittelf 32: 1425–1427Google Scholar
  50. 50.
    Mewes T, Ravens U (1994) L-type Calcium Currents of Human Myocytes from Ventricel on Non-failing and Failing Hearts and from Atrium. J Mol Cell Cardiol 26: 1307–1320PubMedCrossRefGoogle Scholar
  51. 51.
    Millard RW, Gabel M, Fowler NO, Schwartz A (1982) Baroreceptor reflex sensitivity reduced by diltiazem and verapamil. Fed Proc 41: 57959Google Scholar
  52. 52.
    Mines GR (1913) On functional analysis by the action of electolytes. J Physiol (Lond) 46: 188–235Google Scholar
  53. 53.
    Murphy KMM, Gould RJ, Largent BL, Snyder SH (1983) A unitary mechanism of calcium antagonist drug action. Proc Natl Acad Sci of the USA 80 /31: 860–864CrossRefGoogle Scholar
  54. 54.
    Naito M, Tsuruo T (1989) Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res 49: 1452–1455PubMedGoogle Scholar
  55. 55.
    Nawrath H, Teneick RE, McDonald TF, Trautwein W (1977) On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium. Circ Res 40: 408–414PubMedGoogle Scholar
  56. 56.
    Nayler WG (1988) Calcium Antagonists. Academic Press, New YorkGoogle Scholar
  57. 57.
    Opie JH (1988) Calcium channel antagonists, part II. Use and comparative properties of the three prototypical calcium antagonists in ischemic heart disease, including recommendations based on an analysis of 41 trials. Cardiovasc Drugs Ther 1: 461–491PubMedCrossRefGoogle Scholar
  58. 58.
    Pappano AJ, Mubagwa K (1992) Action of muscarinic agents and adenosine on the heart. In: Fozzard HA, Haber HE, Jennings RB, Uatz AM, Morgan HE (eds)The Heart and Cardiovascular System. Raven Press, New York, pp 1765–1776Google Scholar
  59. 59.
    Parmley WW (1990) New calcium antagonists: Relevance of vasoselectivity. Am Heart J 4/1/24335: 1408–1413Google Scholar
  60. 60.
    Pickard JD, Murray GD, Illingworth R, Shaw MDM, Teasdale GM, Foy PM, Humphrey PRD, Lang DA, Nelson R, Richards P, Sinar J, Bailey S, Skene A (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage. British aneurysm nimodipine trial. Br Med J 298: 636–642CrossRefGoogle Scholar
  61. 61.
    Rettig G, Sen S, Vogel W, Heisel A, Schieffer H, Bette L (1988) Antianginal efficacy of gallopamil in comparison to nifedipine. Int J Cardiol 19: 315–325PubMedCrossRefGoogle Scholar
  62. 62.
    Reuter H (1983) Calcium channel modulation of neurotransmitters, enzymes and drugs. Nature 301: 569–574PubMedCrossRefGoogle Scholar
  63. 63.
    Scholz H, Eschenhagen T, Mende U, Neumann J, Schmitz W, Steinfath M (1992) Possible mechanisms of the positive inotropic effect of a-adrenergic receptor stimulation in the heart. In: Fujiwara M, Sugimoto T, Kogure K (eds) a-Adrenoreceptors: Signal transduction, ionic channels and effector organs. Excerpta Medica, Amsterdam, Hong Kong, Princeton, Sydney, Tokyo, pp 101–111Google Scholar
  64. 64.
    Schreibmayer W, Tripathi O, Tritthart HA (1992) Kinetic modulation of guinea-pig cardiac L-type calcium channels by fendiline and reversal of the effects of Bay K8644. Br J Pharmacol 106: 151–156PubMedGoogle Scholar
  65. 65.
    Sing BN, Baky S, Koonlawee N (1985) Second-generation calcium antagonists: Search for greater selectivity and versatility. Am J Cardiol 55:214B–221BGoogle Scholar
  66. 66.
    Singh BN, Vaughan Williams EM (1972) A fourth class of antiarrhythmic action. Effects of verapamil on ouabain toxicity on atrial and ventricular intracellular potentials and other features of cardiac function. Cardiovasc Res 6: 109–119PubMedCrossRefGoogle Scholar
  67. 67.
    Sperelakis N, Caulfield JB (1985) Calcium Antagonists. Martinus Nijhoff, BostonGoogle Scholar
  68. 68.
    Stein B, Mende U, Neumann J, Schmitz W, Scholz H (1993) Pertussin toxin unmasks stimulatory myocardial A2-adenosine receptors on ventricular cardiomyocytes. J Mol Cell Cardiol 25: 655–659PubMedCrossRefGoogle Scholar
  69. 69.
    Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994) Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J 13 (24): 5843–5847PubMedGoogle Scholar
  70. 70.
    Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27: 347–369PubMedCrossRefGoogle Scholar
  71. 71.
    Tritthart HA, Grün G, Byon YK, Fleckenstein A (1970) Influence of Ca-antagonistic inhibitors of excitation-contraction coupling in isolated uterine muscle, studies with the sucrose gap method. Pflüg Arch Eur J Phy 319: 117Google Scholar
  72. 72.
    Tritthart HA (1995) Calcium Channels and the Mechanism of Action of Calcium Antagonists. In: Sperelakis N (ed) Physiology and Pathophysiology of the Heart. Kluwer Academic Publishers, Boston, Dordrecht, London, pp 511–525Google Scholar
  73. 73.
    Tritthart HA, Fleckenstein B, Fleckenstein A (1971) Some fundamental actions of antiarrhythmic drugs on excitability and contractility of single myocardial fibres. Naunyn-Schmiedebergs Arch Pharmacol 169:2–4, 212–219Google Scholar
  74. 74.
    Tritthart HA, Kaufmann R, Volkmer HP (1972) The influences of Cat+-antagonistic compounds on the electrical and mechanical activities of the mammalian myocardium measured in voltage clamp experiments. Naunyn-Schmiedebergs Arch Pharmacol 274: 177Google Scholar
  75. 75.
    Tritthart HA, Volkmann R, Weiss R, Fleckenstein A (1973) Calcium mediated action potentials in mammalian myocardium: Alteration of membrane response as induced by changes of Ca or by promoters and inhibitors of transmembrane Ca-inflow. Naunyn-Schmiedebergs Arch Pharmacol 280: 239–252PubMedCrossRefGoogle Scholar
  76. 76.
    Tseng GN, Boyden PA (1989): Multiple types of Ca’-currents in single canine Purkinje cell. Circ Res 65: 1735–1750PubMedGoogle Scholar
  77. 77.
    Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45: 341358Google Scholar
  78. 78.
    Tsien RW (1987) Calcium currents in heart cells and neurons. In: Kaczmarek LK, Levitan B (eds) Neuromodulation. University Press, New York, Oxford, 206–242Google Scholar
  79. 79.
    Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: Mechanism of selectivity, permeation and block. Annu Rev Biophys Chem 16: 265–290CrossRefGoogle Scholar
  80. 80.
    Van Skiver DM, Spires S, Cohen CJ (1985) High affinity and tissue specific block of T-type Ca-channels by felodipine. Biophys J 55: 593Google Scholar
  81. 81.
    Wei XY, Luchowski EM, Rutledge A, Su CM, Triggle DJ (1986) Pharmacologie and radio-ligand binding analysis of the actions 1,4-dihydropyridine activator-antagonist pairs in smooth muscle. J Pharmacol Exp Ther 239: 144–153PubMedGoogle Scholar
  82. 82.
    Winniford M, Markham R, Firth B, Nicod P, Hillis D (1982) Hemodynamic and electrophysiologic effects of verapamil and nifedpine in patients on propranolol. Am J Cardiol 50: 704-710PubMedCrossRefGoogle Scholar
  83. 83.
    Wit AL, Cranefiled PF (1974) Effects of verapamil on sino-atrial and atrio-ventricular nodes of the rabbit and the mechanism by which it terminates AV nodal reentrant tachycardia. Cire Res 35: 413–425Google Scholar
  84. 84.
    Yang I, Ellinor PI, Sather WA, Zhang IF, Tsien RW (1993) Molecular determinants of Ca’ selectivity and ion permeation in L-type Ca’ channels. Nature 366: 158–161PubMedCrossRefGoogle Scholar
  85. 85.
    Zimmer M, Hofmann F (1987) Differentiation of the drug-binding sites of calmodulin. Eur J Biochem 164: 411–420PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1996

Authors and Affiliations

  • H. A. Tritthart

There are no affiliations available

Personalised recommendations