Skip to main content

Pharmakodynamik der Calciumantagonisten

  • Chapter
Calciumantagonisten
  • 26 Accesses

Zusammenfassung

Transsarkolemnale Ca2+-Einströme spielen die Schlüsselrolle in der elektromechanischen Koppelung der Herzmuskulatur und der glatten Muskulatur. Diese Ca2+ -Ströme tragen wesentlich zu den transmembranären Strömen bei, die Aktionspotentiale auslösen (Impulsbildung) oder sie durch Myokardabschnitte mit langsamer Erregungsausbreitung leiten (SA, AV-Leitung). Auch für die elektrische Aktivität glatter Muskelzellen sind Ca2+-Einströme von entscheidender Wichtigkeit. Die Einführung von Ca2+ -Einstrom-hemmenden Verbindungen durch Fleckenstein eröffnete das Verständnis der Ca2+-Abhängigkeit vieler physiologischer und pathophysiologischer Prozesse, vor allem bei Herzkreislauferkrankungen. Dies schuf neue therapeutische Wege, die mit großem klinischen Erfolg begangen wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aaronson PI, Benham CD, Bolton TB, Hess P, Lang RJ, Tsien RW (1986) Two types of single-channel and whole-cell calcium or barium currents in single smooth muscle cells of rabbit ear artery and the effects of noradrenaline. J Physiol 377: 36

    Google Scholar 

  2. Agus ZS, Kelepouris E, Dukes I, Morad M (1989) Cytosolic magnesium modulates Calcium channel activity in mammalian ventricular cells. Am J Physiol 256: C452–C455

    PubMed  CAS  Google Scholar 

  3. Baeyens JM (1988) Interactions between calcium channel blockers and noncardiovascular drugs: Interaction with anticancer drugs. Pharmacol Toxicol 63: 1–7

    Article  PubMed  CAS  Google Scholar 

  4. Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J Gen Physiol 86: 1–30

    Article  PubMed  CAS  Google Scholar 

  5. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51: 367384

    Google Scholar 

  6. Benham CD, Tsien RW (1988) Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol 404: 767–784

    PubMed  CAS  Google Scholar 

  7. Callewaert G, Hanbauer I, Morad M (1989) Modulation of calcium channels in cardiac and neuronal cells by an endogenous peptide. Science 243: 663–666

    Article  PubMed  CAS  Google Scholar 

  8. Chatelain P, Demol D, Roba J (1984) Comparison of H3-nitrendipine binding to heart membranes of normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 6: 220–223

    Article  PubMed  CAS  Google Scholar 

  9. Chen C, Corbley MJ, Roberts TM, Hess P (1988) Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239: 1024–1026

    Article  PubMed  CAS  Google Scholar 

  10. Dale J, Landmark K, Myhre E (1983) The effects of nifedipine, a calcium antagonist, on platelet function. Am Heart J 105: 103–105

    Article  PubMed  CAS  Google Scholar 

  11. Eichstädt H, Danne O, Gutmann M, Langer M, Felix R, Schmutzler H (1988) Microperfusion in Coronary Artery Disease under Treatment with the Calcium Antagonist Gallopamil. Arzneimittelf 38 (I)/ 5: 700–703

    Google Scholar 

  12. Eschenhagen T (1993) G Proteins and the Heart. Cell Biol Int Rep 17 (8): 723–749

    CAS  Google Scholar 

  13. Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibers. J Physiol 120: 171–204

    PubMed  CAS  Google Scholar 

  14. Ferlinz J (1981) Effects of verapamil on normal and abnormal ventricular functions in patients with ischemic heart disease. In: Zanchetti A (ed) Calcium Antagonism in Cardiovascular Therapy. Excerpta Medica, Amsterdam, pp 92–105

    Google Scholar 

  15. Finkel MS, Patterson RE, Roberts WC, Smith TD, Keiser HR (1988) Calcium channel binding characteristics in the human heart. Am J Cardiol 62: 1281–1284

    Article  PubMed  CAS  Google Scholar 

  16. Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate für Kontraktilität and Tonus des Myokards. Verh Dtsch Ges Inn Med 70: 81–89

    PubMed  CAS  Google Scholar 

  17. Fleckenstein A (1971) Specific inhibitors and promotors of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention of production of myocardial lesions. In: Harris P, Opie L (eds) Calcium and the Heart. Academic Press, New York, pp 135–188

    Google Scholar 

  18. Fleckenstein A (1983) Calcium Antagonism in Heart and Smooth Muscle. Experimental Facts and Therapeutic Prospects. John Wiley, New York

    Google Scholar 

  19. Fleckenstein A, Döring HJ, Kammereier H, Grün G (1968) Influence of prenylamine on the utilization of high energy phosphates in cardiac muscle. Biochim Applic 14 (Suppl 1 ): 323344

    Google Scholar 

  20. Fleckenstein A, Kammermeier H, Döring HJ, Freund HJ (1967) Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myokardeffekten, Prenylamin and Iproveratril. Z Kreisl-Forsch 56: 716–744

    CAS  Google Scholar 

  21. Fleckenstein A, Tritthart HA, Döring HJ, Byon YK (1972) BAY a 1040 — ein hochaktiver Cat+-antagonistischer Inhibitor der elektromechanischen Kopplungsprozesse im Warmblüter-Myokard. Arzneimittelf 22: 22–33

    CAS  Google Scholar 

  22. Fleckenstein A, Tritthart HA, Fleckenstein B, Herbst A, Grün G (1969) A new group of competitive Ca-antagonists (Iproveratril, D600, Prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium. Pflüg Arch Eur J Phy 307: 25

    Google Scholar 

  23. Fleckenstein-Grün G, Fleckenstein A (1983) Blockierung der Ca’ -abhängigen bioelektrischen Automatic und elektromechanischen Koppelung glatter Muskelzellen durch Gallopamil (D 600). In: Kaltenbach M, Hopf R (Hrsg) Gallopamil. Springer, Berlin, Heidelberg, New York, Tokyo, S 35–51

    Google Scholar 

  24. Fleming JW, Wisler PL, Watanabe AM (1992) Signal transduction by G proteins on cardiac tissues. Circulation 85: 420–433

    PubMed  CAS  Google Scholar 

  25. Fox AP, Hirning LD, Mogul DJ, Artalejo CR, Penington NJ, Scroggs RS, Miller RJ (1991) Modulation of calcium channels by neurotransmitters, hormones and second messengers. In: Hurwitz L et al. (eds) Calcium Channels: Their Properties, Functions, Regulation, and Clinical Relevance. CRC Press, Boca Raton, FL, pp 251–263

    Google Scholar 

  26. Garthoff B, Bellemann P (1987) Effects of salt loading and nitrendipine on dihydropyridine receptors in hypertensive rats. J Cardiovasc Pharm 10 (Suppl 10): 36–39

    Google Scholar 

  27. Grün G, Fleckenstein A, Byon YK (1972) Blockierung der Ca’-Effekte auf Tonus und Autoregulation der glatten Gefäßmuskulatur durch Calciumantagonisten (Verapamil, D600, Prenylamin, Bay a 1040 u.a.). In: Betz E (ed) Vascular Smooth Muscle, Proceedings of the 25th International Congress of International Union Physiological Sciences. Springer, Berlin, pp 69–70

    Google Scholar 

  28. Grün G, Fleckenstein A, Tritthart HA (1969) Excitation-contraction uncoupling on the rats uterus by some „musculotropic“ smooth muscle relaxants. Pflüg Arch Eur J Phy 264: 239

    Google Scholar 

  29. Guelker H, Haverkamp W, Hindricks G, Bender F (1987) Calcium antagonists and acute myocardial ischemia. Cardiovasc Drugs Ther 1 (4): 367–376

    Article  CAS  Google Scholar 

  30. Hagiwara S, Irisawa H, Kameyama M (1988): Contribution of two types of calcium channels to the pacemaker potentials of rabbit sino atrial node cells. J Physiol 395: 233–253

    PubMed  CAS  Google Scholar 

  31. Hallström S, Koidl B, Muller U, Werdan K, Schlag G (1991) A cardiodepressant factor isolated from blood blocks Cat+ current in cardiomyocytes. Am J Physiol 260: H869–H876

    PubMed  Google Scholar 

  32. Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+-channels. Science 258: 1152–1155

    Article  PubMed  CAS  Google Scholar 

  33. Hering S, Bolton TB, Beech DJ, Lin SP (1989) Mechanisms of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery. Circ Res 64 (5): 928–936

    PubMed  CAS  Google Scholar 

  34. Hess P (1990) Calcium channels in vertebrate cells. Annu Rev Neurosci 13: 337–356

    Article  PubMed  CAS  Google Scholar 

  35. Hiramatsu K, Yamagishi F, Kubota T, Yamada T (1982) Acute effects of the calcium antagonist, nifedipine, on blood pressure, pulse rate and the renin-angiotensin-aldosterone system in patients with essential hypertension. Am Heart J 104: 1346–1350

    Article  PubMed  CAS  Google Scholar 

  36. Hollingsworth M, Edwards D, Donnai P (1987) Inhibition of contractions of the isolated pregnant human myometrium by calcium entry blockers. Medical Science Research 15 (1): 15–16

    CAS  Google Scholar 

  37. Hosey MM, Lazdunski M (1988) Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 104: 81–105

    Article  PubMed  CAS  Google Scholar 

  38. Janis RA, Silver P, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16: 309–591

    CAS  Google Scholar 

  39. Janke J, Fleckenstein A, Jaedike W (1970) Hemmung der Isoproterenol-induzierten Ca’— 45 Netto-Aufnahme in das Ventrikelmyokard durch Ca’ -antagonistische Hemmstoffe der elektromechanischen Koppelung (Isoptin, Verapamil, Iproveratril und Substanz D600). Pflug Arch Eur J Phy 316: 10

    Google Scholar 

  40. Kanaya S, Katzung BG (1981) Rate-and voltage-dependent block of slow responses and calcium current by diltiazem. Circulation 64 (4, II):IV274

    Google Scholar 

  41. Kass RS (1987) Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K8644. Implications for channel gating. Circ Res 61: 11–15

    Google Scholar 

  42. Kimura E, Kishida H (1981) Treatment of variant angina with drugs. A survey of 11 cardiology institutes in Japan. Circulation 63: 844–848

    Article  PubMed  CAS  Google Scholar 

  43. Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) Differentiation of the transmembrane Na-and Ca-channel in mammalian cardiac fibres by the use of specific inhibitors. Pflug Arch Eur J Phy 335: 309–322

    Article  CAS  Google Scholar 

  44. Kostyuk PG (1989) Diversity of calcium ion channels in cellular membranes. Neuroscience 28: 253–261

    Article  PubMed  CAS  Google Scholar 

  45. Kuga T, Sadoshima J, Tomoike H, Kanaide N, Nakamura M (1990) Action of Ca’ antagonists on two types of Ca’ channels in rat aorta smooth muscle cells in primary culture. Circ Res 67: 469–480

    PubMed  CAS  Google Scholar 

  46. Lansman JB, Hess P, Tsien RW (1986) Blockage of current through single calcium channels by cadmium, magnesium and calcium. J Gen Physiol 88: 321–347

    Article  PubMed  CAS  Google Scholar 

  47. Martin SK, Oduola AM, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falziparum by verapamil. Science 235: 899–901

    Article  PubMed  CAS  Google Scholar 

  48. McCobb DP, Best PM, Beam KG: Development alters the expression of calcium currents in chick limb motoneurons. Neuron 2:1633–1643

    Google Scholar 

  49. Metzger H, Stern HO, Pfitzer GU, Ruegg JC (1982) Calcium antagonists affect calmodulindependent contractility of a skinned smooth muscle. Arzneimittelf 32: 1425–1427

    CAS  Google Scholar 

  50. Mewes T, Ravens U (1994) L-type Calcium Currents of Human Myocytes from Ventricel on Non-failing and Failing Hearts and from Atrium. J Mol Cell Cardiol 26: 1307–1320

    Article  PubMed  CAS  Google Scholar 

  51. Millard RW, Gabel M, Fowler NO, Schwartz A (1982) Baroreceptor reflex sensitivity reduced by diltiazem and verapamil. Fed Proc 41: 57959

    Google Scholar 

  52. Mines GR (1913) On functional analysis by the action of electolytes. J Physiol (Lond) 46: 188–235

    CAS  Google Scholar 

  53. Murphy KMM, Gould RJ, Largent BL, Snyder SH (1983) A unitary mechanism of calcium antagonist drug action. Proc Natl Acad Sci of the USA 80 /31: 860–864

    Article  CAS  Google Scholar 

  54. Naito M, Tsuruo T (1989) Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res 49: 1452–1455

    PubMed  CAS  Google Scholar 

  55. Nawrath H, Teneick RE, McDonald TF, Trautwein W (1977) On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium. Circ Res 40: 408–414

    PubMed  CAS  Google Scholar 

  56. Nayler WG (1988) Calcium Antagonists. Academic Press, New York

    Google Scholar 

  57. Opie JH (1988) Calcium channel antagonists, part II. Use and comparative properties of the three prototypical calcium antagonists in ischemic heart disease, including recommendations based on an analysis of 41 trials. Cardiovasc Drugs Ther 1: 461–491

    Article  PubMed  CAS  Google Scholar 

  58. Pappano AJ, Mubagwa K (1992) Action of muscarinic agents and adenosine on the heart. In: Fozzard HA, Haber HE, Jennings RB, Uatz AM, Morgan HE (eds)The Heart and Cardiovascular System. Raven Press, New York, pp 1765–1776

    Google Scholar 

  59. Parmley WW (1990) New calcium antagonists: Relevance of vasoselectivity. Am Heart J 4/1/24335: 1408–1413

    Google Scholar 

  60. Pickard JD, Murray GD, Illingworth R, Shaw MDM, Teasdale GM, Foy PM, Humphrey PRD, Lang DA, Nelson R, Richards P, Sinar J, Bailey S, Skene A (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage. British aneurysm nimodipine trial. Br Med J 298: 636–642

    Article  CAS  Google Scholar 

  61. Rettig G, Sen S, Vogel W, Heisel A, Schieffer H, Bette L (1988) Antianginal efficacy of gallopamil in comparison to nifedipine. Int J Cardiol 19: 315–325

    Article  PubMed  CAS  Google Scholar 

  62. Reuter H (1983) Calcium channel modulation of neurotransmitters, enzymes and drugs. Nature 301: 569–574

    Article  PubMed  CAS  Google Scholar 

  63. Scholz H, Eschenhagen T, Mende U, Neumann J, Schmitz W, Steinfath M (1992) Possible mechanisms of the positive inotropic effect of a-adrenergic receptor stimulation in the heart. In: Fujiwara M, Sugimoto T, Kogure K (eds) a-Adrenoreceptors: Signal transduction, ionic channels and effector organs. Excerpta Medica, Amsterdam, Hong Kong, Princeton, Sydney, Tokyo, pp 101–111

    Google Scholar 

  64. Schreibmayer W, Tripathi O, Tritthart HA (1992) Kinetic modulation of guinea-pig cardiac L-type calcium channels by fendiline and reversal of the effects of Bay K8644. Br J Pharmacol 106: 151–156

    PubMed  CAS  Google Scholar 

  65. Sing BN, Baky S, Koonlawee N (1985) Second-generation calcium antagonists: Search for greater selectivity and versatility. Am J Cardiol 55:214B–221B

    Google Scholar 

  66. Singh BN, Vaughan Williams EM (1972) A fourth class of antiarrhythmic action. Effects of verapamil on ouabain toxicity on atrial and ventricular intracellular potentials and other features of cardiac function. Cardiovasc Res 6: 109–119

    Article  PubMed  CAS  Google Scholar 

  67. Sperelakis N, Caulfield JB (1985) Calcium Antagonists. Martinus Nijhoff, Boston

    Google Scholar 

  68. Stein B, Mende U, Neumann J, Schmitz W, Scholz H (1993) Pertussin toxin unmasks stimulatory myocardial A2-adenosine receptors on ventricular cardiomyocytes. J Mol Cell Cardiol 25: 655–659

    Article  PubMed  CAS  Google Scholar 

  69. Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994) Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J 13 (24): 5843–5847

    PubMed  CAS  Google Scholar 

  70. Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27: 347–369

    Article  PubMed  CAS  Google Scholar 

  71. Tritthart HA, Grün G, Byon YK, Fleckenstein A (1970) Influence of Ca-antagonistic inhibitors of excitation-contraction coupling in isolated uterine muscle, studies with the sucrose gap method. Pflüg Arch Eur J Phy 319: 117

    Google Scholar 

  72. Tritthart HA (1995) Calcium Channels and the Mechanism of Action of Calcium Antagonists. In: Sperelakis N (ed) Physiology and Pathophysiology of the Heart. Kluwer Academic Publishers, Boston, Dordrecht, London, pp 511–525

    Google Scholar 

  73. Tritthart HA, Fleckenstein B, Fleckenstein A (1971) Some fundamental actions of antiarrhythmic drugs on excitability and contractility of single myocardial fibres. Naunyn-Schmiedebergs Arch Pharmacol 169:2–4, 212–219

    Google Scholar 

  74. Tritthart HA, Kaufmann R, Volkmer HP (1972) The influences of Cat+-antagonistic compounds on the electrical and mechanical activities of the mammalian myocardium measured in voltage clamp experiments. Naunyn-Schmiedebergs Arch Pharmacol 274: 177

    Google Scholar 

  75. Tritthart HA, Volkmann R, Weiss R, Fleckenstein A (1973) Calcium mediated action potentials in mammalian myocardium: Alteration of membrane response as induced by changes of Ca or by promoters and inhibitors of transmembrane Ca-inflow. Naunyn-Schmiedebergs Arch Pharmacol 280: 239–252

    Article  PubMed  CAS  Google Scholar 

  76. Tseng GN, Boyden PA (1989): Multiple types of Ca’-currents in single canine Purkinje cell. Circ Res 65: 1735–1750

    PubMed  CAS  Google Scholar 

  77. Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45: 341358

    Google Scholar 

  78. Tsien RW (1987) Calcium currents in heart cells and neurons. In: Kaczmarek LK, Levitan B (eds) Neuromodulation. University Press, New York, Oxford, 206–242

    Google Scholar 

  79. Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: Mechanism of selectivity, permeation and block. Annu Rev Biophys Chem 16: 265–290

    Article  CAS  Google Scholar 

  80. Van Skiver DM, Spires S, Cohen CJ (1985) High affinity and tissue specific block of T-type Ca-channels by felodipine. Biophys J 55: 593

    Google Scholar 

  81. Wei XY, Luchowski EM, Rutledge A, Su CM, Triggle DJ (1986) Pharmacologie and radio-ligand binding analysis of the actions 1,4-dihydropyridine activator-antagonist pairs in smooth muscle. J Pharmacol Exp Ther 239: 144–153

    PubMed  CAS  Google Scholar 

  82. Winniford M, Markham R, Firth B, Nicod P, Hillis D (1982) Hemodynamic and electrophysiologic effects of verapamil and nifedpine in patients on propranolol. Am J Cardiol 50: 704-710

    Article  PubMed  CAS  Google Scholar 

  83. Wit AL, Cranefiled PF (1974) Effects of verapamil on sino-atrial and atrio-ventricular nodes of the rabbit and the mechanism by which it terminates AV nodal reentrant tachycardia. Cire Res 35: 413–425

    CAS  Google Scholar 

  84. Yang I, Ellinor PI, Sather WA, Zhang IF, Tsien RW (1993) Molecular determinants of Ca’ selectivity and ion permeation in L-type Ca’ channels. Nature 366: 158–161

    Article  PubMed  CAS  Google Scholar 

  85. Zimmer M, Hofmann F (1987) Differentiation of the drug-binding sites of calmodulin. Eur J Biochem 164: 411–420

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Tritthart, H.A. (1996). Pharmakodynamik der Calciumantagonisten. In: Kübler, W., Tritthart, H.A. (eds) Calciumantagonisten. Steinkopff. https://doi.org/10.1007/978-3-642-93678-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93678-4_2

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-93679-1

  • Online ISBN: 978-3-642-93678-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics