Pharmakologische Grundlagen des zerebralen Calciumantagonismus

  • J. Krieglstein
  • J. H. M. Prehn


Calciumantagonisten wirken neuroprotektiv. Der entscheidende Angriff erfolgt offenbar direkt am Neuron. Andere Wirkqualitäten der Calciumantagonisten, wie Vasodilatation oder antioxidative Effekte, können ihre neuroprotektive Wirkung unterstützen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268: 239–247PubMedCrossRefGoogle Scholar
  2. 2.
    Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11: 425–430PubMedCrossRefGoogle Scholar
  3. 3.
    Witcher DR, De Waard M, Sakamoto J, Franzini-Armstrong C, Pragnell M, Kahl SD, Campbell KP (1993) Subunit identification and reconstitution of the N-type Ca’ channel complex purified from brain. Science 261: 486–489PubMedCrossRefGoogle Scholar
  4. 4.
    Tsien RW, Ellinor PT, Home WA (1991) Molecular diversity of voltage-dependent Ca“ channels. Trends Pharmacol Sci 12: 349–354PubMedCrossRefGoogle Scholar
  5. 5.
    Miller RJ (1993) A tale of two toxins. Curr Opinion Biol 3: 481–483Google Scholar
  6. 6.
    Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, Home WA, Mori Y, Schwartz A, Snutch TP, Tanabe T, Tsien RW (1994) The naming of voltage-gated calcium channels. Neuron 13: 505–506PubMedCrossRefGoogle Scholar
  7. 7.
    Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350: 398–402PubMedCrossRefGoogle Scholar
  8. 8.
    De Waard M, Pragnell M, Campbell KP (1994) Ca’ channel regulation by a conserved ß subunit domain. Neuron 13: 495–503PubMedCrossRefGoogle Scholar
  9. 9.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443PubMedCrossRefGoogle Scholar
  10. 10.
    Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52PubMedCrossRefGoogle Scholar
  11. 11.
    Scott RH, Pearson HA, Dolphin AC (1991) Aspects of vertebrate neuronal voltage-activated calcium currents and their regulation. Prog Neurobiol 36: 485–520PubMedCrossRefGoogle Scholar
  12. 12.
    Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca’ channels in mammalian central neurons. Trends Neurosci 18: 89–98PubMedCrossRefGoogle Scholar
  13. 13.
    Llinâs R, Sugimori M, Hillman DE, Cherksey B (1992) Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci 15: 351–355PubMedCrossRefGoogle Scholar
  14. 14.
    Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinâs R (1991) Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci USA 88: 7076–7080PubMedCrossRefGoogle Scholar
  15. 15.
    Luebke JI, Dunlap K, Turner TJ (1993) Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 11: 895–902PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi T, Momlyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366: 156–161PubMedCrossRefGoogle Scholar
  17. 17.
    Sather WA, Tanabe T, Zhang JF, Mori Y, Adams ME, Tsien RW (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel a, subunits. Neuron 11: 291–303PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang JF, Randall AD, Ellinor PT, Home WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32: 1075–1088PubMedCrossRefGoogle Scholar
  19. 19.
    Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, Snutch TP (1994) Localization and functional properties of a rat brain alA calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci USA 91: 10576–10580PubMedCrossRefGoogle Scholar
  20. 20.
    Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260: 1133–1136PubMedCrossRefGoogle Scholar
  21. 21.
    Miller RJ (1990) Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 4: 3291–3299PubMedGoogle Scholar
  22. 22.
    Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca’ channel trigger secretion with different efficacies in chromaffin cells. Nature 367: 72–76PubMedCrossRefGoogle Scholar
  23. 23.
    Horne AL, Kemp JA (1991) The effect of w-conotoxin GIVA on synaptic transmission within the nucleus accumbens and hippocampus of the rat in vitro. Br J Pharmacol 103: 1733–1739PubMedGoogle Scholar
  24. 24.
    Haydon PG, Henderson E, Stanley EF (1994) Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron 13: 1275–1280PubMedCrossRefGoogle Scholar
  25. 25.
    Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites. Nature 345: 807–810PubMedCrossRefGoogle Scholar
  26. 26.
    Kullmann DM, Perkel DJ, Manabe T, Nicoll RA (1992) Ca’ entry via postsynaptic voltage-sensitive Ca’ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Neuron 9: 1175–1183PubMedCrossRefGoogle Scholar
  27. 27.
    Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347: 477–479PubMedCrossRefGoogle Scholar
  28. 28.
    Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na + spikes determines the pattern of dendritic Ca’ entry into hippocampal neurons. Nature 357: 244–246PubMedCrossRefGoogle Scholar
  29. 29.
    Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca“ concentration in hippocampal CAl pyramidal cells are primarily due to voltage-gated Ca” channels. Neuron 9: 1163–1173PubMedCrossRefGoogle Scholar
  30. 30.
    Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268: 301–304PubMedCrossRefGoogle Scholar
  31. 31.
    Choi D (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276PubMedCrossRefGoogle Scholar
  32. 32.
    Siesjö BK, Katsura K, Pahlmark K, Smith ML (1992) Pharmacology of Cerebral Ischemia. In: Krieglstein J, Oberpichler-Schwenk H (eds) The multiple causes of ischemic brain damage: a speculative synthesis. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 511–525Google Scholar
  33. 33.
    Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–185PubMedCrossRefGoogle Scholar
  34. 34.
    Nuglisch J, Krieglstein J (1992) Metabolic disorders as consequences of drug induced energy deficits. In: Herken H, Hucko F (eds) Handbook of Experimental Pharmacology Springer Berlin, Heidelberg, vol 102, pp 111–139Google Scholar
  35. 35.
    Peruche B, Krieglstein J (1993) Mechanisms of drug actions against neuronal damage caused by ischemia — an overview. Prog Neuro-Psych Biol Psych 17: 21–70CrossRefGoogle Scholar
  36. 36.
    Rami A, Krieglstein J (1993) Brain damage caused by ischemia: pathophysiological and pharmacological aspects. Dementia 4: 21–31PubMedGoogle Scholar
  37. 37.
    Krieglstein J, Peruche B (1991) Pharmakologische Grundlagen der Therapie der zerebralen Ischämie. Arzneimittelforschung 41 (I): 303–309PubMedGoogle Scholar
  38. 38.
    Nuglisch J, Krieglstein J (1992) Pharmacological treatment of cerebral ischemia. Drugs of Today 28: 431–438Google Scholar
  39. 39.
    Thoenen H, Castrén E, Berzaghi M, Blöchl A, Lindholm D (1994) Recent Advances in the Treatment of Neurodegenerative Disorders and Cognitive Dysfunction. In: Racagni G, Bru-nello N, Langer SZ (eds) Int Acad Biomed Drug Res, Karger, Basel, 7, 197–203Google Scholar
  40. 40.
    Prehn JHM, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ (1994) Regulation of neuronal Bc12 protein expression and calcium homeostasis by transforming growth factor type 13 confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 91: 12599–12603PubMedCrossRefGoogle Scholar
  41. 41.
    Spedding M, Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44: 363–376PubMedGoogle Scholar
  42. 42.
    Striessing J, Murphy BJ, Catterall WA (1991) Dihydropyridine receptor of L-type Ca2+ channel: identification of binding domains for [3H](+)PN-200–110 and [3H]azidopine within the at subunit. Proc Natl Acad Sci USA 88: 10769–10773CrossRefGoogle Scholar
  43. 43.
    Glossmann H, Ferry DR, Goll A, Striessing J, Zernig G (1985) Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneimittelforschung 35: 1917–1935PubMedGoogle Scholar
  44. 44.
    Striessing J, Catterall WA (1991) Identification of a phenylalkylamine binding region within the at subunit of skeletal muscle Ca’ channels. Biophys J 59: 87aGoogle Scholar
  45. 45.
    Spedding M (1985) Activators and inactivators of Ca’ channels: new perspectives. J Pharmacol (Paris) 16: 319–343Google Scholar
  46. 46.
    Beck T, Krieglstein J (1987) Local cerberal glucose utilization and local cerebral blood flow in conscious rats after administration of flunarizine. Naunyn-Schmied Arch Pharmacol 335: 680–685CrossRefGoogle Scholar
  47. 47.
    Kovâch AGB, Dora E, Szedlacsek S, Koller A (1983) Effect of the organic calcium antagonist D-600 on cerebrocortical vascular and redox responses evoked by adenosine, anoxia, and epilepsy. J Cereb Blood Flow Metab 3: 51–61PubMedCrossRefGoogle Scholar
  48. 48.
    Szabo L (1989) (S)-Emopamil, a novel calcium and serotonin antagonist for the treatment of cerebrovascular disorders. Arzneimittelforschung 39 (I):309–314PubMedGoogle Scholar
  49. 49.
    Mohamed AA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1984) Effect of the calcium antagonist nimodipine on local cerebral blood flow: relationship to arterial blood pressure. J Cereb Blood Flow Metab 4: 206–211PubMedCrossRefGoogle Scholar
  50. 50.
    Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14Clantipyrine. Am J Physiol 234: H59–H60PubMedGoogle Scholar
  51. 51.
    Harper AM, Craigen L, Kazda S (1981) Effect of the calcium antagonist, nimodipine, on cerebral blood flow and metabolism in the primate. J Cereb Blood Flow Metab 1: 349–356PubMedCrossRefGoogle Scholar
  52. 52.
    Mohamed AA, Mendelow AD, Teasdale GM, Harper AM, McCulloch J (1985) Effect of the calcium antagonist nimodipine on local cerebral blood flow and metabolic coupling. J Cereb Blood Flow Metab 5: 26–33PubMedCrossRefGoogle Scholar
  53. 53.
    Jacewicz M, Brint S, Tanabe J, Wang XJ, Pulsinelli WA (1990) Nimodipine pretreatment improves cerebral blood flow and reduces brain edema in conscious rats subjected to focal cerebral ischemia. J Cereb Blood Flow Metab 10: 903–913PubMedCrossRefGoogle Scholar
  54. 54.
    Bielenberg GW, Haubruck H, Krieglstein J (1987) Effects of calcium entry blocker emopamil on postischemic energy metabolism of the isolated perfused rat brain. J Cereb Blood Flow Metab 7: 489–496PubMedCrossRefGoogle Scholar
  55. 55.
    Nuglisch J, Karkoutly C, Mennel HD, Roßberg C, Krieglstein J (1990) Protective effect of nimodipine against ischemic neuronal damage in rat hippocampus without changing postischemic cerebral blood flow. J Cereb Blood Flow Metab 10: 654–659PubMedCrossRefGoogle Scholar
  56. 56.
    Bielenberg GW, Beck T, Sauer D, Burniol M, Krieglstein J (1987) Effects of cerebroprotective agents on cerebral blood flow and on postischemic energy metabolism in the rat brain. J Cereb Blood Flow Metab 7: 480–488PubMedCrossRefGoogle Scholar
  57. 57.
    Bielenberg GW, Stierstorfer HJ, Weber J, Krieglstein J (1989) Nimodipine reduces postischemic lactate levels in the isolated perfused rat brain. Biochem Pharmacol 38: 853–855PubMedCrossRefGoogle Scholar
  58. 58.
    Weber J, Bielenberg GW, Krieglstein J (1988) Effects of phenylalkylamine calcium entry blockers on postischemic energy metabolism in the isolated perfused rat brain: stereoselective action of emopamil. Pharmacology 37: 38–49PubMedCrossRefGoogle Scholar
  59. 59.
    Nuglisch J, Sauer D, Beck T, Bielenberg GW, Mennel HD, Roßberg C, Krieglstein J (1987) Effects of flunarizine and emopamil on postischemic blood flow, energy metabolism and cell damage in the rat brain. Arch Pharmaz 320: 333Google Scholar
  60. 60.
    Nakayama H, Ginsberg MD, Dietrich WD (1988) (S)-Emopamil, a novel calcium channel blocker and serotonin 52 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673Google Scholar
  61. 61.
    Bielenberg GW, Sauer D, Nuglisch J, Beck T, Roßberg C, Mennel HD, Krieglstein J (1989) Effects of emopamil on postischemic blood flow and neuronal damage in rat brain. NaunynSchmied Arch Pharmacol 339: 230–235CrossRefGoogle Scholar
  62. 62.
    Weiss JH, Hartley DM, Koh J, Choi DW (1994) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247: 1474–1477CrossRefGoogle Scholar
  63. 63.
    Pizzi M, Ribola M, Valerio A, Memo M, Spano P (1991) Various Ca2+ entry blockers prevent glutamate-induced neurotoxicity. Eur J Pharmacol 209: 169–173PubMedCrossRefGoogle Scholar
  64. 64.
    Prehn JHM, Lippert K, Krieglstein J (1995) Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury? Eur J Pharmacol 292: 179–189PubMedGoogle Scholar
  65. 65.
    Krieglstein J, Sauer D, Nuglisch J, Karkoutly C, Beck T, Bielenberg GW, Rossberg C, Men-nel HD (1989) Protective effects of calcium antagonists against brain damage caused by ischemia. In: Hartmann A, Kuschinsky W (eds) Cerebral Ischemia and Calcium. Springer Berlin, Heidelberg, pp. 223–231Google Scholar
  66. 66.
    Welsch M, Karkoutly C, Nuglisch J, Roßberg C, Mennel HD, Krieglstein J (1990) Nimodipin wirkt neuroprotektiv ohne Steigerung der lokalen zerebralen Durchblutung. Pharm Ztg Wiss 1: 29–34Google Scholar
  67. 67.
    Welsch M, Nuglisch J, Krieglstein J (1990) Neuroprotective effect of nimodipine is not mediated by increased cerebral blood flow after transient forebrain ischemia in rats. Stroke 21: IV-105-IV-107Google Scholar
  68. 68.
    Mohamed AA, Gotoh O, Graham DI, Osborne KA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1985) Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18: 705–711PubMedCrossRefGoogle Scholar
  69. 69.
    Jacewicz M, Brint S, Tanabe J, Pulsinelli WA (1990) Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal cerebral ischemia. J Cereb Blood Flow Metab 10: 89–96PubMedCrossRefGoogle Scholar
  70. 70.
    Beck T, Nuglisch J, Sauer D, Bielenberg GW, Mennel HD, Rossberg C, Krieglstein J (1988) Effects of flunarizine on postischemic blood flow, energy metabolism and neuronal damage in the rat brain. Eur J Pharmacol 158: 271–274PubMedCrossRefGoogle Scholar
  71. 71.
    Hosaka T, Yamamoto YL, Diksic M (1991) Efficacy of retrograde perfusion of the cerebral vein with verapamil after focal ischemia in rat brain. Stroke 22: 1562–1566PubMedCrossRefGoogle Scholar
  72. 72.
    Weber J, Krieglstein J (1985) Effect of gallopamil on energy metabolism of the isolated perfused rat brain in the postischemic period. Naunyn-Schmied Arch Pharmacol 329: 451–454CrossRefGoogle Scholar
  73. 73.
    Kucharczyk J, Chew W, Derugin N, Moseley M, Rollin C, Berry I, Norman D (1989) Nicardipine reduces ischemic brain injury. Magnetic resonance imaging/spectroscopy study in cats. Stroke 20: 268–274Google Scholar
  74. 74.
    Alps BJ, Hass WK (1987) The potential beneficial effect of nicardipine in a rat model of transient forebrain ischemia. Neurology 37: 809–814PubMedGoogle Scholar
  75. 75.
    Valentino K, Newcomb R, Gadbios T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R, Miljanich G, Ramachandran J (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 90: 7894–7898PubMedCrossRefGoogle Scholar
  76. 76.
    Uematsu D, Greenberg JH, Hickey WF, Reivich M (1989) Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 20: 1531–1537PubMedCrossRefGoogle Scholar
  77. 77.
    Uematsu D, Araki N, Greenberg JH, Sladky J, Reivich M (1991) Combined therapy with MK-801 and nimodipine for protection of ischemic brain damage. Neurology 41: 88–94PubMedGoogle Scholar
  78. 78.
    Hewitt K, Corbett D (1992) Combined treatment with MK-801 and nicardipine reduces global ischemic damage in the gerbil. Stroke 23: 82–86PubMedCrossRefGoogle Scholar
  79. 79.
    Rod MR, Auer RN (1992) Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia. Stroke 23: 725–732PubMedCrossRefGoogle Scholar
  80. 80.
    Lippert K, Krieglstein J (1994) Over-additive effect of nimodipine and dizocilpine against neuronal damage. Naunyn-Schmied Arch Pharmacol 349: R84Google Scholar
  81. 81.
    Lupo E, Locher R, Weisser B, Vetter W (1994) In vitro antioxidant activity of calcium antagonists against LDL oxidation compared with a-tocopherol. Biochem Biophys Res Commun 203: 1803–1808PubMedCrossRefGoogle Scholar
  82. 82.
    Mak IT, Weglicki WB (1994) Antioxidant activity of calcium channel blocking drugs. Methods in Enzymology 234: 620–630PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1996

Authors and Affiliations

  • J. Krieglstein
  • J. H. M. Prehn

There are no affiliations available

Personalised recommendations