Advertisement

Bedeutung neuer Dopaminrezeptoren für die Wirkung von Clozapin

  • R. Markstein
Conference paper

Zusammenfassung

Die Dopaminhypothese der Schizophrenie in ihrer klassischen Form postuliert, daß die Symptome dieser Geisteskrankheit durch Überaktivität zentraler dopaminerger Systeme verursacht werden. Diese Hypothese basiert fast ausschließlich auf indirekten Evidenzien wie z. B. der Beobachtung, daß antidopaminerge Eigenschaften ein gemeinsames Merkmal klinisch wirksamer Neuroleptika sind und daß Amphetamin, welches im Gehirn Dopamin freisetzt, bei Gesunden Psychosen auslösen kann. Auch die Tatsache, daß Neuroleptika bei Patienten motorische Störungen bewirken, wie sie als Ausdruck eines Dopaminmangels bei der Parkinson-Krankheit auftreten, konnte zwanglos als Folge der Blockade striataler Dopaminrezeptoren erklärt werden (Carlsson 1978). Die Dopaminhypothese erfuhr eine weitere Verfeinerung durch die Entdeckung, daß sich Dopaminrezeptoren in D-1- und D-2-Typen einteilen lassen, und daß die in vitro Affinitäten von Neuroleptika zu D-2-Rezeptoren mit den klinischen Dosen korrelieren (Seemann 1980).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anden NE, Grenhoff J, Svensson TH (1988) Does treatment with haloperidol for 3 weeks produce depolarisation block in midbrain dopamine neurons of unanaesthethized rats? Psychopharmaco-logy 96:558–560CrossRefGoogle Scholar
  2. Anderssen PH, Nielsen EB, Gronvald FC, Braestrup C (1986) Some atypical neuroleptics inhibit [3H]SCH23390 binding in vivo. Eur J Pharmac 120:143–144CrossRefGoogle Scholar
  3. Arnt J, Hyttel J (1986) Inhibition of SFF 38393- and pergolideinduced circling in rats with unilateral 6-OHDA lesion is correlated to dopamine D-1 and D-2 receptor affinities in vitro. J Neural Transm 67:225–240PubMedCrossRefGoogle Scholar
  4. Arnt J, Hyttel J, Perregard J (1987) Dopamine D-l receptor agonists combined with the selective D-2 agonist quinpirole facilitate the expression of oral stereotyped behaviour in rats. Eur J Pharmacol 133:137–145PubMedCrossRefGoogle Scholar
  5. Ashby B (1990) Dopamine und schizophrenia. Nature 348:493PubMedCrossRefGoogle Scholar
  6. Baldessarini RJ, Frankenburg FR (1991) Clozapine: A novel antipsychotic agent. New Engl J Med 324:746–754PubMedCrossRefGoogle Scholar
  7. Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effects of drugs influencing central serotoninergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62:67–69PubMedCrossRefGoogle Scholar
  8. Blaha CD, Lane RF (1987) Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo. Neurosci Letters 78:199–204CrossRefGoogle Scholar
  9. Borison RL, Diamond BI, Pathiraja A, Meibach RC (1992) Clinical overview of risperidone. In: Meltzer HY (ed) Novel antipsychotic drugs. Raven Press, New York, pp 233–239Google Scholar
  10. Braun AR, Chase TN (1986) Obligatory D-1/D-2 receptor interaction in the generation of dopamine agonist related behaviors. Eur J Pharmac 131:301–306CrossRefGoogle Scholar
  11. Bürki HR, Ruch W, Asper H, Baggiolini M, Stille G (1974) Effect of single und repeated administration of clozapine on the metabolism of dopamine und noradrenaline in the brain of the rat. Eur J Pharmacol 27:180–190PubMedCrossRefGoogle Scholar
  12. Carlsson A (1978) Antipsychotic drugs, neurotransmitters und schizophrenia. Am J Psychiatry 135:164–173Google Scholar
  13. Chen J, Paredes W, Gardner EL (1991) Chronic treatment with clozapine selectively decreases basal dopamine release in nucleus accumbens but not in caudate-putarnen as measured by in vivo brain microdialysis: further evidence for depolarisation block. Neurosci Letters 122:127–131CrossRefGoogle Scholar
  14. Chiodo LA, Bunney BS (1983) Typical und atypicl neuroleptics: Differential effects of chronic administration on the activity of A9 und A10 midbrain dopaminergic neurons. J Neurosci 3:1607–1619PubMedGoogle Scholar
  15. Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 5:2539–2544PubMedGoogle Scholar
  16. Chipkin RE, McQuade RD, Lorio LC (1987) D-1 und D-2 dopamine binding site up-regulation und apomorphine-induced stereotypy, Pharmacol Bioch Beh 28:447–482CrossRefGoogle Scholar
  17. Coward DM (1992) General pharmacology of clozapine. Br J Psychiatry 160 (Suppl 17):5–11Google Scholar
  18. Coward DM, Imperato A, Urwyler S, White TG (1989) Biochemical und behavioural properties of clozapine. Psychopharmacology 99:S6–S12PubMedCrossRefGoogle Scholar
  19. Dall’Olio R, Gandolfi O, Roncada P, Vaccheri A, Monatanaro N (1990) Repeated treatment with (-)-sulpiride plus low dose of SCH23390 displays wider neuroleptic activity without inducing dopaminergic supersensitivity. Psychopharmacology 100:560–562PubMedCrossRefGoogle Scholar
  20. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: A review and reconceptualisation, Am J Psych 148:1474–1486Google Scholar
  21. De Keyser J, Claeys A, DeBacker JP, Ebinger G, Roels F, Vauquelin G (1988) Autoradiographic localisation of the D-l und D-2 dopamine receptors in human brain. Neusci Letters 91:142–147CrossRefGoogle Scholar
  22. DiChiara G, Imperato A (1985) Rapid tolerance to neuroleptic-induced stimulation of dopamine release in freely moving rats. J Pharmacol Exp Ther 235:487–494Google Scholar
  23. Ellenbroek BA, Artz MT, Cools A (1991) The involvement of dopamine D-l and D-2 receptors in the effects of classical neuroleptics haloperidol and the atypical neuroleptic clozapine. Eur J Pharmacol 196:103–108PubMedCrossRefGoogle Scholar
  24. Ernst AM, Smelik PG (1966) Site of action of dopamine und apomorphine on compulsive gnawing behaviour in the rat. Experientia 22:837–838PubMedCrossRefGoogle Scholar
  25. Essig EC, Kilpatrick IC (1991) Influence of acute und chronic haloperidol treatment on dopamine metabolism in the rat caudate-putamen, prefrontal cortex und amygdala. Psychopharmacology 104:194–200PubMedCrossRefGoogle Scholar
  26. Farde L, Nordström AL (1992) PET analysis indicates atypical dopamine receptor occupancy in clozapine-treated patients. Br J Psychiatry 160 (Suppl 17) :30–33Google Scholar
  27. Herith AJ (1992) The dopamine hypothesis and neurophysiologic concepts in schizophrenia. Rev Neurosci 3:207–216CrossRefGoogle Scholar
  28. Imperato A, Angelucci L (1989) The effects of clozapine und fluperlapine on the in vivo release und metabolism of dopamine in the striatum und the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25:383–389PubMedGoogle Scholar
  29. Imperato A, DiChiara G (1985) Dopamine release und metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci 5:297–306PubMedGoogle Scholar
  30. Imperato A, DiChiara G (1988) Effects of locally applied D-l und D-2 receptor agonists und antagonists studied with brain dialysis. Eur J Pharmacol 156:385–393PubMedCrossRefGoogle Scholar
  31. Jenner P, Marsden CD (1987) Neuroleptic-induced tardive dyskinesia. Acta Psychiat Belg 87:566:598Google Scholar
  32. Kane J, Honigfeld G, Singer J, Meltzer H (1987) Clozapine for treatment-resistent schizophrenic. results of a US multicenter trial. Psychopharmacology 99:S60–63CrossRefGoogle Scholar
  33. Leysen JE, Janssen P, Gommeren W, Wynants J, Pauwels PJ, Janssen PAJ (1992) In vitro und in vivo binding und effects on monoamine turnover in rat brain reagions of the novel antipsychotics risperidone und ocaperidone. Mol Pharmacol 41:494–508PubMedGoogle Scholar
  34. Maidment NT, Marsden CA (1987) Repeated atypical neuroleptic administration: effects on central dopamine metabolism monitored by in vivo voltammetry. Eur J Pharmacol 136:141–149PubMedCrossRefGoogle Scholar
  35. Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopaminesero- tonin hypthesis of schizophrenia. Psychopharmacology 99:S18–S27PubMedCrossRefGoogle Scholar
  36. Mitchell JB, Gratton A (1992) Partial dopamine depletion of the prefrontal cortex leads to enhanced mesolimbic dopamine release elicited by repeated exposure to naturally reinforcing stimuli. J Neurosci 12:3609–3618PubMedGoogle Scholar
  37. Moghaddam B, Bunney BS (1990) Acute effetcs of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: An in vivo microdialysis study. J Neurochem 54:1755:1760PubMedCrossRefGoogle Scholar
  38. Monsma FJ, McVittie LD, Gerfen CR, Manan LC, Sibley DR (1990) Multiple D-2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929CrossRefGoogle Scholar
  39. Naber D, Holzbach R, Perro C, Hippius H (1992) Clinical management of clozapine patients in relation to efficacy und side effects. Brit J Psychiatry 160 (Suppl 17) :54–59Google Scholar
  40. Nielsen EB, Andersen PH (1992) Dopamine receptor occupancy in vivo: behavioral correlates using NNC-112, NNC-687 und NNC-756, new selective dopamine D-l receptor antagonists. Eur J Pharmacol 219:35–44PubMedCrossRefGoogle Scholar
  41. Perry PJ, Miller DD, Arndt SV, Cadoret RJ (1981) Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients. Am J Psychiatry 148:213–235Google Scholar
  42. Pilowsky LS, Costa DC, Eli PJ, Murray RM, Verhoeff NPLG, Kerwin RW (1992) Clozapine, single photon emission tomography, and the D-2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340:199–202PubMedCrossRefGoogle Scholar
  43. Rupniak NMJ, Hall M, Mann S, Feleminger S, Kilpartick G, Jenner P, Marsden D (1985) Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochem Pharmacol 34:2755–2763PubMedCrossRefGoogle Scholar
  44. Sailer CF, Kreamer LD, Adamovage LA, Salama AI (1989) Dopamine receptor occupancy in vivo: measurment using N-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline (EEDQ). Life Sci 45:917–929CrossRefGoogle Scholar
  45. Schmutz J (1975) Neuroleptic piperazinyl-dibenzo-azepines Arzneimittelforsch 25:712–720PubMedGoogle Scholar
  46. Seemann P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313Google Scholar
  47. Seemann P (1992) Dopamine receptor sequences: Therapeutic levels of neuroleptics occupy D-2 receptors, clozapine occupies D-4. Neuropsychopharmacology 7:261–284Google Scholar
  48. Seemann P, Niznik HB, Guan HC, Booth G, Ulpian C (1989) Link between D-l and D-2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci 86:10156–10160CrossRefGoogle Scholar
  49. Shaikh S, Collier D, Kerwin RW, Pilowsky LS, Gill M, Xu WM, Thornton A (1993) Dopamine D-4 receptor subtypes and responde to clozapine. Lancet 341–116Google Scholar
  50. Sibley DR, Monsma FJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol 13:61–69CrossRefGoogle Scholar
  51. Sokoloff P, Giros B, Bouthenet ML, Schwartz JC (1990) Molecular cloning und characterisation of a novel dopamine receptor (D-3) as a target for neuroleptics. Nature 347:146–151PubMedCrossRefGoogle Scholar
  52. Sokoloff P, Giros B, Martres MP, Andrieux M, Besancon R, Pilon C, Bouthenet ML (1992) Localisation and function of the D-3 dopamine receptor. Drug Res 42:224–230Google Scholar
  53. Stille G, Lauener H, Eichenberger E (1971) The pharmacology of 8-chloro-ll-(4-methyl-l-pip-erazinyl)-5H-dibenzo[b, e] [1,4] diazepine (Clozapine). Il Farmaco 26:603–625Google Scholar
  54. Sunahara RK, Guan, HC, O’Dowd F, Seemann P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human dopamine D-5 receptor with higher affinity for dopamine than D-l. Nature 350:614–619PubMedCrossRefGoogle Scholar
  55. Van Putten T, Marder SR, Mintz J, Poland RE (1992) Haloperidol plasma levels und clinical response. A Therapeutic window relationship. Am J Psychiatry 149:500–505PubMedGoogle Scholar
  56. Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seemann P, Niznik HR, Civelli O (1991) Cloning of the gene for a human dopamine D-4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614PubMedCrossRefGoogle Scholar
  57. Van Tol HHM, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seemann P, Niznik HP, Jovanovic V, (1992) Multiple dopamine D-4 receptor variants in the human population. Nature 358:149–152PubMedCrossRefGoogle Scholar
  58. Waddington JL, O’Boyle KM (1989) Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first elective D-l antagonist. Pharmacology Ther 43:501–527Google Scholar
  59. White FJ, Wang RY (1983) Differential effects of classical und atypical antipsychotic drugs on A9 und A10 dopamine neurons. Science 221:1054–1057PubMedCrossRefGoogle Scholar
  60. Zhang W, Tilson H, Stachowiak MK, Hong JS (1989) Repeated haloperidol administration changes basal release of striatal dopamine und subsequent response to haloperidol challenge. Brain Res 484:389–392PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. Markstein

There are no affiliations available

Personalised recommendations