Der Einfluß von Röntgenkontrastmitteln auf Organe und Gefäße

  • P. Dawson
  • N. H. Strickland
  • V. Taenzer
  • J. E. Scherberich
  • B. Glöbel
  • M. R. Sage
  • F. Laerum


Gewöhnlich werden im Zusammenhang mit der KM-Toxizität 3 Faktoren genannt: die Hyperosmolalität, die Chemotoxizität und die elektrische Ladung. Genaugenommen sollte die elektrische Ladung unter den Oberbegriff Chemotoxizität fallen, da sie einen Teil dieses Phänomens bildet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dawson P (1984) Chemotoxicity of contrast media and clinical adverse effects: a review. Invest Radiol 20: 583–591Google Scholar
  2. 2.
    Howell MJ, Dawson P (1985) Contrast agents and enzyme inhibation. II Mechanisms. Br J Radiol 58: 845–848Google Scholar
  3. 1.
    Aspelin P (1978) Effect of ionic and non-ionic contrast media on morphology of human erythrocytes. Acta Radiol Diagn 19: 675–687Google Scholar
  4. 2.
    Hardeman NR, Goedhart P, Koeni Y (1991) The effect of low-osmolar ionic and non-ionic contrast media on human blood viscosity, erythrocyte morphology, and aggregation behaviour. Invest Radiol 26: 810–818PubMedCrossRefGoogle Scholar
  5. 3.
    Howell L, Dawson P (1986) Contrast agents and enzyme inhibition. II Mechanisms. Br J Radiol 59: 987–991Google Scholar
  6. 4.
    Strickland NH, Rampling MW, Dawson P, Martin G (1992) Contrast media-induced effects on blood rheology and their importance in angiography. Clin Radiol (in press)Google Scholar
  7. 5.
    Strickland NH, Rampling MW, Dawson P, Martin G (1992) The effects of radio-contrast media on the rheological properties of blood. Eur J Haemorheol (in press)Google Scholar
  8. 1.
    Dawson P (1985) Chemotoxicity of contrast agents and clinical adverse effects. Invest Radiol 20: 584–591CrossRefGoogle Scholar
  9. 2.
    Dawson P et al (1986) Contrast, coagulation and fibrinolysis. Invest Radiol 21: 248–252PubMedCrossRefGoogle Scholar
  10. 3.
    Dawson P, Strickland NS (1991) Thromboembolic phenomena in clinical angiography: role of materials and technique. JVIR 2: 125–132PubMedCrossRefGoogle Scholar
  11. 4.
    Robertson MJF (1987) Blood clot formation in angiographie syringes containing non-ionic contrast media. Radiology 162: 621–622PubMedGoogle Scholar
  12. 1.
    Assem ESK, Bray K, Dawson P (1983) The release of histamine from human basophile by radiological contrast agents. Br J Radiol 56: 647–652PubMedCrossRefGoogle Scholar
  13. 2.
    Dawson P, Edgerton D (1983) Contrast media and enzyme inhibition. I Acetylcholinesterose. Br J Radiol 56: 653–656Google Scholar
  14. 3.
    Dawson P, Harrison MJG, Weisblat E (1983) Effect of contrast media on red cell filtrability and morphology. Br J Radio! 56: 707–710CrossRefGoogle Scholar
  15. 4.
    Dawson P et al (1986) Contrast, coagulation and fibrinolysis. Invest Radiol 21: 248–252PubMedCrossRefGoogle Scholar
  16. 5.
    Dawson P (1989) Cardiovascular effects of contrast agents. Am J Cardiol 64: 2E - 9EPubMedCrossRefGoogle Scholar
  17. 6.
    Hine AL, Lui D, Dawson P (1985) Contrast media osmolality and plasma volume changes. Acta Radio 26: 753–756Google Scholar
  18. 1.
    Beales JSM, Saxton HM (1968) The radiographic demonstration of bronchospasm and its relief by aminophylline. Br J Radiol 41: 899–901PubMedCrossRefGoogle Scholar
  19. 2.
    Chambalin WH, Stockman GD, Wray WP (1979) Shock and non cardiogenic pulmonary oedema following meglumine diatrizoate for intravenous urography. Am J Med 67: 684–686CrossRefGoogle Scholar
  20. 3.
    Dawson O, Ptifield J, Britton J (1983) Contrast media and bronchospasm: a study with iopamidol. Clin Radiol 34: 227–230PubMedCrossRefGoogle Scholar
  21. 4.
    Gold WH (1965) Pulmonary function abnormalities after lymphangiography. N Engl J Med 273: 519–524PubMedCrossRefGoogle Scholar
  22. 5.
    Littner MR, Rosenfield AT, Ulreich S, Putman CE (1977) Evaluation of bronchospasm during excretions urography. Radiology 124: 17–21PubMedGoogle Scholar
  23. 6.
    Mare K, Violante M, Zack A (1984) Contrast media induced pulmonary oedema. Comparison of ionic and non-ionic agents in an animal model. Invest Radiol 19: 566–569Google Scholar
  24. 7.
    Mare K, Violante M, Zack A (1985) Pulmonary oedema following high intravenous doses of diatrizoate in the rat. Effects of corticosteroid pretreatment. Acta Radiol 26: 477–482Google Scholar
  25. 8.
    Suprenant E, Wilson A, Bennett L, O’Reilly R, Webber M (1968) Changes in regional pulmonary function following bronchography. Radiology 91: 736–741Google Scholar
  26. 1.
    Bahlmann J, Krüskemper HL (1973) Elimination of iodine-containing contrast media by haemodialysis. Nephron 10: 250–254PubMedCrossRefGoogle Scholar
  27. 2.
    Berns AS (1989) Nephrotoxicity of contrast media. Kidney Int 36: 730–740PubMedCrossRefGoogle Scholar
  28. 3.
    Dawson P (1987) Aspects of contrast media nephrotoxicity. In: Felix R et al (eds) Contrast media, from the past to the future. Thieme, Stuttgart, pp 137–148Google Scholar
  29. 4.
    Golman K, Almén T (1985) Contrast media-induced nephrotoxicity. Survey and present state. Invest Radiol 20: 92–97Google Scholar
  30. 5.
    Kumar S, Muchmore A (1990) TammHorsfall Protein-Uromodulin. Kidney Int 37: 1395–1401PubMedCrossRefGoogle Scholar
  31. 6.
    Neumayer H-H, Junge W, Küfner A, Wenning A (1989) Prevention of radiocontrast-media induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial. Nephrol Dial Transplant 4: 1030–1036PubMedGoogle Scholar
  32. 7.
    Scherberich JE (1989) Immunological and ultrastructural analysis of shedding of tubular membrane-bound enzymes in urine of patients with kidney diseases. Clin Chim Acta 185: 271–282PubMedCrossRefGoogle Scholar
  33. 8.
    Scherberich J, Tuengerthal S, Kollath J (1983) Monitoring of contrast media nephrotoxicity by specific kidney tissue proteinuria of membrane antigens. In: Taenzer W, Zeitler E (eds) CM in urography. Thieme, Stuttgart, pp 37–42Google Scholar
  34. 9.
    Scherberich JE, Wolf G, Albers C et al (1989) Glomerular and tubular membrane antigens reflecting cellular adaptation in human renal failure. Kidney Int 36, S 27: 38–51Google Scholar
  35. 10.
    Schwab SJ, Hlatky MA, Pieper KS et al (1989) Contrast media nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiografic contrast agent. N Engl J Med 320: 149–153PubMedCrossRefGoogle Scholar
  36. 11.
    Scherberich JE, Rautschka E, Fischer A, Kollath J, Riemann J (1991) Tubular histuria: Clinical evaluation of the different nephrotoxic potential of x-ray contrast media. Contrib Nephrol (im Druck )Google Scholar
  37. 12.
    Taenzer W, Wende A (eds) (1989) Recent developments in nonionic contrast media. Thieme, StuttgartGoogle Scholar
  38. 13.
    Taenzer W, Zeitler E (eds) (1983) Contrast media in urography, angiography and computerized tomography. Thieme, StuttgartGoogle Scholar
  39. 14.
    Vari RC, Natarajan LA, Whitescarver SA, Jackson BA, Ott CE (1988) Induction, prevention and mechanisms of contrast media-induced acute renal failure. Kidney Int 33: 399–707CrossRefGoogle Scholar
  40. 1.
    Bradbury MW (1988) Transport across the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain Schädigen Kontrastmittel die Gefäßwand? 73 barrier and its manipulation. Plenum, New York, pp 119–134Google Scholar
  41. 2.
    Hilal SK (1966) Haemodynamic responses in the cerebral vessels to angiographic contrast media. Acta Radiol 5: 211–231Google Scholar
  42. 3.
    Junck J, Marhsall WH (1983) Neurotoxicity of radiological contrast agents. Ann Neurol 13: 469–484PubMedCrossRefGoogle Scholar
  43. 4.
    Murphy DJ (1973) Cerebrovascular permeability after meglumine iothalamate administration. Neurology 23:926— 936Google Scholar
  44. 5.
    Sage MR (1983) Kinetics of water-soluble contrast media in the central nervous system. AJNR 4: 897–906Google Scholar
  45. 6.
    Sage MR (1989) Neuroangiography. In: Skucas J (ed) Radiographic contrast agents, 2nd edn. Aspen, Rockville, pp 170–188Google Scholar
  46. 7.
    Skalpe IO, Nakstad P (1988) Myelography with iohexol (omnipaque): a clinical report with special reference to the adverse effects. Neuroradiology 30: 169–174PubMedCrossRefGoogle Scholar
  47. 8.
    Sovak M (1984) Contrast media for imaging of the central nervous system. In: Sovak M (ed) Radio contrast agents. Springer, Berlin Heidelberg New York, pp 295–340 (Handbook of experimental pharmacology, vol 73 )Google Scholar
  48. 1.
    Albrechtsson U, Olsson C-G (1979) Thrombosis after phlebography: a comparison of two contrast media. Cardiovasc Radiol 2: 9–14PubMedCrossRefGoogle Scholar
  49. 2.
    Bettmann MA, Salzman EW, Rosenthal D et al (1980) Reduction of venous thrombosis complicating phlebography. AJR 134: 1169–1172PubMedGoogle Scholar
  50. 3.
    Bromann T, Olsson 0 (1949) Experimental study of contrast media for cerebral angiography with reference to possible injurious effects on the cerebral blood vessels. Acta Radiol 31: 321–334Google Scholar
  51. 4.
    Grabowski EF (1989) Effects of contrast media on endothelial cell mono-layers under controlled flow conditions. In: Enge 1, Edgren P (eds) Patient safety and adverse events in contrast medium examinations. No. 816 Elsevier/Excerpta Medica, Amsterdam, pp 85–95 (International ongress series, no 816)Google Scholar
  52. 5.
    Hol R, Skjerven 0 (1954) Spinal cord damage in abdominal angiography. Acta Radio] 42: 276–284Google Scholar
  53. 6.
    Hörup A, Eliassen B, Reimer-Jensen A, Praestholm J (1982) Comparison of Hexabrix and Urografin in the study of post-phlebographic thrombotic side effects. In: Amiél M (ed) Contrast media in Radiology. Springer, Berlin Heidelberg New York, pp 231–232CrossRefGoogle Scholar
  54. 7.
    Laerum F (1987) Cytotoxic effects of six angiographic contrast media on human endothelium in culture. Acta Radio] 28: 99–105CrossRefGoogle Scholar
  55. 8.
    Laerum F (1983) Acute damage to human endothelial cells by brief exposure to contrast media in vitro. Radiology 147: 681–684PubMedGoogle Scholar
  56. 9.
    Laerum F, Holm HA (1981) Postphlebographic thrombosis. A double blind study with methylglucamine metrizoate and metrizamide. Radiology 140: 651–654Google Scholar
  57. 10.
    Mersereau WA, Robertson HR (1961) Observations on venous endothelial injury following the injection of various radiographic contrast media in the rat. J Neurosurg 18: 289–294PubMedCrossRefGoogle Scholar
  58. 11.
    Nyman U, Almén T (1980) Effects of contrast media on aortic endothelium. Experiments in the rat with non-ionic monomeric and mono-acidic dimeric contrast media. Acta Radiol Suppl 362: 65–71Google Scholar
  59. 12.
    Raininko R (1979) Role of hypertonicity in the endothelial injury caused by angiographie contrast media. Acta Radiol 20: 410–416Google Scholar
  60. 13.
    Ritchie WGM, Lynch PR, Stewart GJ (1974) The effect of contrast media on normal and inflamed canine veins. Invest Radiol 9: 444–455PubMedCrossRefGoogle Scholar
  61. 14.
    Schneider KM, Ham KN, Friedhuber A, Rand MJ (1988) Functional and morphologic effects of ioxilan, iohexol and diatrizoate on endothelial cells. Invest Radio] 23 (Suppl 1): S147–149CrossRefGoogle Scholar
  62. 15.
    Thiesen B, Muetzel W (1990) Effects of contrast media on venous endothelium of rabbits. Invest Radiol 25: 121–126PubMedCrossRefGoogle Scholar
  63. 16.
    Zinner G, Gottlob R (1959) Die gefäßschädigende Wirkung verschiedener Röntgenkontrastmittel, vergleichende Untersuchungen. Fortschr Roentgenstr 91: 507–511PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Dawson
  • N. H. Strickland
  • V. Taenzer
  • J. E. Scherberich
  • B. Glöbel
  • M. R. Sage
  • F. Laerum

There are no affiliations available

Personalised recommendations