Migräne pp 299-335 | Cite as

Anatomische, physiologische, pathophysiologische und pharmakologische Aspekte des serotoninergen Systems

  • Manfred Göthert


Besonders in den letzten 15 Jahren sind erhebliche Fortschritte auf dem Gebiet der Physiologie und Pharmakologie des serotoninergen Systems erzielt worden. Diese Fortschritte erstrecken sich auf die Erforschung der vielfältigen Funktionen, die Serotonin [5-Hydroxytryptamin (5-HT); Abb. 12.1] in zahlreichen Organsystemen, wie z. B. im zentralen und peripheren Nervensystem, im kardiovaskulären System, im Gastrointestinaltrakt und im Blut, ausübt und vor allem auf die Aufklärung der ausgeprägten Heterogenität der 5-HT-Rezeptoren, d. h. auf den Nachweis einer bemerkenswert hohen Zahl verschiedenartiger 5-HT-Rezeptorklassen, -unterklassen und -subtypen (Abb. 12.2).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlmann H, Dahlström A (1982) Storage and release of 5-hydroxytryptamine in enterochromaffin cells of the small intestine. In: De Clerck F, Vanhoutte PM (eds) 5-Hydroxytryptamine in peripheral reactions. Raven Press, New York, pp 1–9Google Scholar
  2. 2.
    Anthony M (1986) The biochemistry of migraine. In: Vinken PJ, Bruyn GW, Clifford Rose F (eds) Handbook of clinical neurology, vol 4 (48): Headache. Elsevier, Amsterdam, pp 85–105Google Scholar
  3. 3.
    Anthony M, Hinterberger H, Lance JW (1967) Plasma serotonin in migraine and stress. Arch Neurol 16:544–552PubMedGoogle Scholar
  4. 4.
    Barnes JM, Bames NM, Costall B, Naylor RJ, Tyers MB (1989) 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 338:762–763PubMedGoogle Scholar
  5. 5.
    Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809PubMedGoogle Scholar
  6. 6.
    Blandina P, Goldfarb J, Walcott J, Green JP (1991) Serotonergic moduladon of the release of endogenous norepinephrine from rat hypothalamic slices. J Pharmacol Exp Ther 256:341–347PubMedGoogle Scholar
  7. 7.
    Bockaert J, Dumuis A, Bouhelal R, Sebben M, Cory RN (1987) Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg’s Arch Phamacol 335:588–592Google Scholar
  8. 8.
    Bockaert J, Fozard JR, Dumuis A, Clarke DE (1992) The 5-HT4 receptor: a place in the sun. Trends Pharmacol Sci 13:141–145PubMedGoogle Scholar
  9. 9.
    Boddeke HWGM, Fargin A, Raymond JR, Schoeffter P, Hoyer D (1992) Agonist/antagonist interactions with cloned human 5-HT 1A receptors: variations in intrinsic activity studied in transfected HeLa cells. Naunyn-Schmiedeberg’s Arch Pharmacol 345:257–263Google Scholar
  10. 10.
    Bonvento G, MacKenzie ET, Edvinsson L (1991) Serotonergic intervation of the cerebral vasculature: relevance to migraine and ischaemia. Brain Res Rev 16:257–263PubMedGoogle Scholar
  11. 11.
    Bouhelal R Smounya L, Bockaert J (1988) 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 151: 189–196 PubMedGoogle Scholar
  12. 12.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–576PubMedGoogle Scholar
  13. 13.
    Brewerton TD, Murphy DL, Mueller EA, Jimerson DC (1988) Induction of migraine-like headache by the serotonin agoinst m-chlorophenylpiperazine. Clin Pharmacol Ther 43:605–609PubMedGoogle Scholar
  14. 14.
    Bunce K, Tyers M, Beranek P (1991) Clinical evaluation of 5-HT3 receptor antagonists as anti-emetics. Trends Pharmacol Sci 12:46–48PubMedGoogle Scholar
  15. 15.
    Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR 43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206PubMedGoogle Scholar
  16. 16.
    Buzzi MG, Carter WB, Shimizu T, Heath H, Moskowitz MA (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30:1193–1200PubMedGoogle Scholar
  17. 17.
    Carrol JD, Hilton Bp (1974) The effects of reserpine injection on methysergide treated control and migrainous subjects. Headache 14:149–156Google Scholar
  18. 18.
    Chaput Y, de Montigny C, Blier P (1986) Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the brain. Naunyn-Schmiedeberg’s Arch Pharmacol 333:342–348Google Scholar
  19. 19.
    Chopin P, Briley M (1987) Animal models of anxiety: The effects of compounds that modify 5-HT neurotransmission. Trends Pharmacol Sci 8:383–388Google Scholar
  20. 20.
    Clarke DE, Craig DA, Fozard JR (1989) The 5-HT4 receptor, naughty but nice. Trends Pharmacol Sci 10:385–386PubMedGoogle Scholar
  21. 21.
    Conn PJ, Sanders-Bush E (1987) Central serotonin receptors: effector systems, physiological roles and regulation. Psychopharmacology 92:267–277PubMedGoogle Scholar
  22. 22.
    Costall B, Naylor RJ (1992) Serotonin and psychiatric disorders. A key to new therapeutic approaches. Arzneimittelforschung/Drug Res 42:246–249Google Scholar
  23. 23.
    Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neurosci 2:41–65Google Scholar
  24. 24.
    Cowen PJ, Anderson IM, Gartside SE (1990) Endocrinological responses to 5-HT. Ann N Y Acad Sci 600:250–257PubMedGoogle Scholar
  25. 25.
    Curran DA, Hinterberger H, Lance JW (1965) Total plasma serotonin, 5-hydroxyin- doleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain 88:997–1007PubMedGoogle Scholar
  26. 26.
    Dechant KL, Clissold SP (1992) Sumatriptan. A review of its pharmacodynamic and pharmacokinetic properies, and therapeutic efficacy in the acute treatment of migraine and cluster headache. Drugs 43:776–798PubMedGoogle Scholar
  27. 27.
    De Montigny C (1989) Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Arch Gen Psychiatry 46:511–517PubMedGoogle Scholar
  28. 28.
    De Vry J, Glaser T, Schuurman T, Schreiber R, Traber J (1991) 5-HTIA receptors in anxiety. In: Briley M, File SE (eds) New concepts in anxiety. Macmillan, London, pp 94–129Google Scholar
  29. 29.
    Dumius A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988) A nonclassical 5-hydrosytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 34:880–887Google Scholar
  30. 29a.
    Erlander MG, Lovenberg TW, Baron BM, de Lecea L, Danielson PE, Racke M, Slone AL, Siegel BW, Foye PE, Cannon K, Bums JE, Sutcliffe JG (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 90:3452–3456PubMedGoogle Scholar
  31. 30.
    Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Leflcowitz RJ (1988) The genomic clone G-21 which resembles a ß-adrenergic receptor sequence encodes the 5-HT 1A receptor. Nature 335:358–360PubMedGoogle Scholar
  32. 31.
    Feniuk W, Humphrey PPA, Perren MJ, Connor HE, Whalley ET (1991) Radonale for the use of 5-HT1-like agonists in the treatment of migraine. J Neurol 238 [Suppl 1]: S 57-S 61Google Scholar
  33. 32.
    Ferrari MD (1991) 5-HT3 receptor antagonists and migraine therapy. J Neurol 238 [Suppl 1] S 53-S 56PubMedGoogle Scholar
  34. 33.
    Fozard JR (1984) MDL 72222, a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326:36–44Google Scholar
  35. 34.
    Fozard JR (1985) 5-Hydroxytryptamine in the pathophysiology of migraine. In: Bevan JA, Godfraind T, Maxwell RA, Stoclet JC, Worcel M (eds) Vascular neuroeffector mechanisms. Elsevier, Amsterdam, pp 321–328Google Scholar
  36. 35.
    Fozard JR (1987) 5-HT3 receptors and cytotoxic drug-induced vomiting. Trends Pharmacol Sci 8:44–45Google Scholar
  37. 35a.
    Fozard JR (1992) 5-HT1C receptor agonism as an initiadng event in migraine. In: Olesen J, Saxena PR (eds) 5-Hydroxytryptamine mechanisms in primary headache. Raven Press, New York, pp 200–212Google Scholar
  38. 36.
    Fozard JR, Gray JA (1989) 5-HT1C receptor activation: a key step in the initation of migraine? Trends Pharmacol Sci 10:307–309PubMedGoogle Scholar
  39. 36a.
    Fozard JR, Kalkman HO (1994) 5-Hydroxytryptamine (5-HT) and the initiation of migraine: new perspectives. Naunyn-Schmiedeberg’s Arch Pharmacol (im Druck)Google Scholar
  40. 37.
    Fozard JR, Mwaluko GMP (1976) Mechanism of the indirect sympahtomimetic effect of 5-hydroxytryptamine on the isolated heart of the rabbit. Br J Pharmacol 57:115–125PubMedGoogle Scholar
  41. 38.
    Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30:307–348PubMedGoogle Scholar
  42. 39.
    Gaddum JN, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol 12:323–328Google Scholar
  43. 40.
    Galzin AM, Langer SZ (1991) Moduladon of 5-HT release by presynaptic inhibitory and facilitatory 5-HT receptors in brain slices. In: Langer SZ, Galzin AM, Costentin J (eds) Advances in the biosciences, vol 82. Pergamon Press, Oxford New York, pp 59–62Google Scholar
  44. 41.
    Glaser T, Traber J (1985) Binding of the putative anxiolytic TVX Q 7821 to hippocampal 5-hydroxytryptamine (5-HT) recognition sites. Naunyn-Schmiedeberg’s Arch Pharmacol 329:211–215Google Scholar
  45. 42.
    Glennon RA, Titeler M, Seggel MR, Lyon RA (1987) N-methylderivatives of the 5-HT2agonist l-(4-bromo-2,5-dimethoxyphenyl)2-aminopropane. J Med Chem 30:930–932PubMedGoogle Scholar
  46. 43.
    Göthert M (1990) Presynaptic serotonin receptors in the central nervous system. Ann N Y Acad Sci 603:102–112Google Scholar
  47. 44.
    Göthert M (1991) Presynaptic effects of 5-HT. In: Stone TW (ed) Aspects of synaptic transmission, vol 1:LTP, galanin, opioids, autonomic. Taylor & Francis, London New York Philadelphia, pp 314–329Google Scholar
  48. 45.
    Göthert M (1992) 5-Hydroxytryptamine receptors. An example for the complexitiy of chemical transmission of information in the brain. Arzneimittelforschung/Drug Res 42:238–246Google Scholar
  49. 46.
    Göthert M, Dührsen U (1979) Effects of 5-hydroxytryptamine and related compounds on the sympathetic nerves of the rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 308:9–18Google Scholar
  50. 47.
    Göthert M, Schlicker E (1987) Classification of serotonin receptors. J Cardiovasc Pharmacol 10 [Suppl 3]:S3-S7PubMedGoogle Scholar
  51. 48.
    Göthert M, Kollecker P, Rohm N, Zerkowski HR (1986) Inhibitory presynaptic 5-hydroxytryptamine (5-HT) receptors on the sympathetic nerves of the human saphenous vein. Naunyn-Schmiedeberg’s Arch Pharmacol 332:317–323Google Scholar
  52. 49.
    Göthert M, Moiderings GJ, Fink K, Schlicker E (1991) Heterogeneity of presynaptic serotonin receptors on sympathetic neurones in blood vessels. Blood Vessels 28:11–18PubMedGoogle Scholar
  53. 50.
    Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142PubMedGoogle Scholar
  54. 51.
    Griffith SG, Bumstock G (1983) Immunohistochemical demonstration of serotonin in nerves supplying human cerebral and mesenteric vessels. Lancet I:561–562Google Scholar
  55. 52.
    Hartig P, Hoffman BJ, Kaufman MJ, Hirata F (1990) The 5-HT1D receptor. Ann N Y Acad Sci 600:149–167PubMedGoogle Scholar
  56. 53.
    Hartig PR, Branchek TA, Weinshank RL (1992) A subfamiliy of 5-HT 1D receptor genes. Trends Pharmacol Sci 13:152–159PubMedGoogle Scholar
  57. 54.
    Heller WA, Baraban JM (1987) Potent agonist activity of DOB at 5-HT2 receptors in guinea pig trachea. Eur J Pharmacol 138:115–117PubMedGoogle Scholar
  58. 55.
    Higgins GA, Kilpatrick GJ, Bunce KT, Jones BJ, Tyers MB (1989) 5-HT3 receptor antagonists injected into the area postrema inhibit cisplatin-induced emesis in the ferret. Br J Pharmacol 97:247–255Google Scholar
  59. 56.
    Hoffmann BJ, Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580Google Scholar
  60. 57.
    Holmsen H (1985) Platelet activation and serotonin. In: Vanhoutte PM (ed) Serotonin and the cardiovascular system: Raven Press, New York, pp 75–86Google Scholar
  61. 58.
    Hoyer D (1988) Molecular pharmacology and biology of 5-HTic receptors. Trends Pharmacol Sci 9:89–94PubMedGoogle Scholar
  62. 59.
    Hoyer D (1990) Serotonin 5-HT3, 5-HT4, and 5-HT-M receptors. Neuropsycho- pharmacology 3:371–383PubMedGoogle Scholar
  63. 60.
    Hoyer D, Schoeffter P, Waeber C, Palacios JM (1990) Serotonin 5-HT1D receptors. Ann N Y Acad Sci 600:168–182PubMedGoogle Scholar
  64. 60a.
    Hoyer D, Fozard JR, Saxena PR, Mylecharane EJ, Clarke DE, Martin GR, Humphrey PPA (1994) A new classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev (in press)Google Scholar
  65. 61.
    Hughes J, Woodruff GN (1992) Neuropepddes. Function and clinical applications. Arzneimittelforschung/Drug Res 42:250–255Google Scholar
  66. 62.
    Humphrey PPA, Feniuk W (1991) Mode of action of the and-migraine drug sumatriptan. Trends Pharmacol Sci 12:444–446PubMedGoogle Scholar
  67. 63.
    Humphrey PPA, Apperley E, Feniuk W, Perren MJ (1990) A rational approach to identifying a fundamentally new drug for the treatment of migraine.In: Saxena PR, Wallis DI, Wouters W, Bevan JA (eds) Cardiovascular pharmacology of 5- hydroxytryptamine. Prospective therapeutic applications. Kluwer, Dordrecht, pp 417–431Google Scholar
  68. 63a.
    Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236PubMedGoogle Scholar
  69. 64.
    Ireland SJ, Tyers MB (1987) Pharmacological characterization of 5-hydroxytryptamine-induced depolarisation of the rat isolated vagus nerve. Br J Pharmacol 90:229–238PubMedGoogle Scholar
  70. 65.
    Kao HT, Olsen MA, Hartig PR (1989) Isolation and characterization of a human 5-HT2 receptor clone. Soc Neurosci Abstr 15:486Google Scholar
  71. 66.
    Kilpatrick GJ, Jones BJ, Tyers MB (1987) The identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748PubMedGoogle Scholar
  72. 67.
    Kilpatrick GJ, Bunce KT, Tyers MB (1990) 5-HT3 Receptors. Med Res Rev 10:441–475PubMedGoogle Scholar
  73. 68.
    Kimball RW, Friedman AP, Vallejo E (1960) Effect of serotonin in migraine patients. Neurology 10:107–111PubMedGoogle Scholar
  74. 69.
    Lance JW, Anthony M, Hinterberger H (1967) The control of cranial arteries by humoral mechanisms and its relation to the migraine syndrome. Headache 7:93–102PubMedGoogle Scholar
  75. 70.
    Lefebvre H, Contesse V, Delarue C, Feuilloley M, Hery F, Grise P, Raynaud G, Verhofstad AAJ, Wolf LM, Vaudry H (1992) Serotonin-induced sdmulation of Cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin receptor subtype. Neuroscience 47:999–1007PubMedGoogle Scholar
  76. 71.
    Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilatation and neurogenic plasma extravasation. Naunyn-Schmiedeberg’s Arch Pharmacol 310:175–193Google Scholar
  77. 72.
    Leysen JE (1990) Gaps and peculiarities in 5-HT2 receptor studies. Neuropsycho- pharmacology 3:361–369Google Scholar
  78. 73.
    Leysen JE, Pauwels PJ (1990) 5-HT2 receptors, roles and regulation. Ann N Y Acad Sci 600:183–193PubMedGoogle Scholar
  79. 74.
    Maayani S, Sherman MR (1990) Adenylate cyclase-linked 5-hydroxytryptamine receptors in the brain. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM (eds) Serotonin. From cell biology to pharmacology and therapeutics. Kluwer, Dordrecht, pp 39–52Google Scholar
  80. 75.
    Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 254:432–436PubMedGoogle Scholar
  81. 76.
    Markstein R, Hoyer D, Engel G (1986) 5-HT1A receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 333:335–341 Google Scholar
  82. 77.
    Matsubara T, Moskowitz MA, Byun B (1991) CP-93, 129, a potent and selective 5-HTIB receptor agonist, blocks neurogenic plasma extravasation within rat but not giunea-pig dura mater. Br J Pharmacol 104:3–4PubMedGoogle Scholar
  83. 78.
    Maura G, Raiten M (1984) Functional evidence that chronic drugs induce adaptive changes of central autoreceptors regulating serotonin release. Eur J Pharmacol 97:309–313PubMedGoogle Scholar
  84. 79.
    Meitzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246Google Scholar
  85. 80.
    Middlemiss DN (1988) Autoreceptors regulating serotonin release. In: Sanders- Bush E (ed) The serotonin receptors. Humana Press, Clifton New York, pp 201–224Google Scholar
  86. 81.
    Middlemiss DN, Hutson PH (1990) The 5-HTIB receptors. Ann N Y Acad Sci 600:132–148PubMedGoogle Scholar
  87. 82.
    Moiderings GJ, Fink K, Schlicker E, Göthert M (1987) Inhibition of noradrenaline release via presynaptic 5-HTIB receptors of the rat vena cava. Naunyn-Schmiedeberg’s Arch Pharmacol 336:245–250Google Scholar
  88. 83.
    Moiderings GJ, Werner K, Likungu J, Göthert M (1990) Inhibition of noradrenaline release from the sympathetic nerves of the human saphenous vein via presynaptic 5-HT receptors similar to the 5-HTID subtype. Naunyn-Schmiedeberg’s Arch Pharmacol 342:371–377Google Scholar
  89. 83a.
    Monsma FJ, Shen Y, Ward RP, Hamblin MW, Sibley DR (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 43:320–327PubMedGoogle Scholar
  90. 84.
    Moret C, Briley M (1990) Serotonin autoreceptor subsensitivity and antidepressant activity. Eur J Pharmacol 180:351–356PubMedGoogle Scholar
  91. 85.
    Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13:307–311PubMedGoogle Scholar
  92. 86.
    Moskowitz MA Buzzi MG (1991) Neuroeffector functions of sensory fibres: Implications for headache mechanisms and drug actions. J Neurol 238 [Suppl 1]:S18- S22PubMedGoogle Scholar
  93. 87.
    Moskowitz MA, Matsubara T, Buzzi MG (1991) Sensory prejunctional 5- HTIB receptors mediate blockade of neurogenic plasma extravasation within rat but not guinea pig dura mater. Soc Neurosci Abstr 17:721Google Scholar
  94. 88.
    Mylecharane EJ (1991) 5-HT2 receptor antagonists and migraine therapy. J Neurol 238 [Suppl 1]:S45-S52PubMedGoogle Scholar
  95. 89.
    Paudice P, Raiten M (1991) Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens. Br J Pharmacol 103:1790–1794PubMedGoogle Scholar
  96. 90.
    Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of an new type of serotonin recognition site. Eur J Pharmacol 106:593–546Google Scholar
  97. 91.
    Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes. Ann Rev Neurosci 11:496–500Google Scholar
  98. 92.
    Peroutka SJ (1990) 5-Hydroxytryptamine receptor subtypes. Pharmacol Toxicol 67:373–383PubMedGoogle Scholar
  99. 93.
    Peroutka SJ (1991) VI. Serotonin receptor subtypes and neuropsychiatric diseases: Focus on 5-HTID and 5-HT3 receptor agents. Pharmacol Rev 43:579–586 PubMedGoogle Scholar
  100. 94.
    Peroutka SJ, Marthy BG (1989) Sumatriptan (GR43175) interacts selectively with 5-HTIB and 5-HTID binding sites. Eur J Pharmacol 163 :133–136 PubMedGoogle Scholar
  101. 95.
    Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H] lysergic acid diethylamide and [3H] spiroperidol. Mol Pharmacol 16:687–699PubMedGoogle Scholar
  102. 96.
    Peters JA, Lambert JJ (1989) Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol Sci 10:172–175PubMedGoogle Scholar
  103. 97.
    Pickel VM, Armstrong DM (1984) Ultrastructural localisation of monoamines and pepddes in rat area postrema. Fed Proc 43:2929–2951Google Scholar
  104. 98.
    Pritchett DB, Bach AWJ, Wozny M, Taleb O, Dal Toso R, Shih JC, Seeburg PH (1988) Stucture and functional expression of cloned rat serotonin 5-HT2 receptor. EMBO J 7:4135–4140PubMedGoogle Scholar
  105. 99.
    Rapport MM, Green AA, Page IH (1948) Serum vascoconstrictor (serotonin). IV. Isolation and characterization. J Biol Chem 176:1243–1251PubMedGoogle Scholar
  106. 100.
    Richardson BP, Engel G, Donatsch P, Stadler PA (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316:126–131PubMedGoogle Scholar
  107. 100a.
    Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz J-Ch (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating MP formation. Proc Nad Acad Sci 90:8547–8551Google Scholar
  108. 101.
    Sanders KH, Beller KD, Kolassa N (1990) Involvement of 5-HTIA receptors in blood pressure reduction by 8-OH-DPAT andurapidil in cats. J Cardiovasc Pharmacol 15:S86-S93PubMedGoogle Scholar
  109. 102.
    Saxena PR (1990) 5-Hydroxytryptamine and migraine. In: Saxena PR, Wallis DI, Wouters W, Bevan JA (eds) Cardiovascular pharmacology of 5-hydroxytryptamine: Prospective therapeudc applications. Kluwer, Dordrecht, pp 407–416Google Scholar
  110. 103.
    Saxena PR, Den Boer MO (1991) Pharmacology of andmigraine drugs. J Neurol 238 [Suppl 1]:S28-S35PubMedGoogle Scholar
  111. 104.
    Saxena PR, Ferrari MD (1989) 5-HTi-like receptor agonists and the pathophysiology of migraine. Trends Pharmacol Sci 10:200–204PubMedGoogle Scholar
  112. 105.
    Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi I, Göthert M (1992) Anpirtoline, a novel, highly potent 5-HT 1B receptor agonist with antinociceptive/antidepressant-like acdons in rodents. Br J Pharmacol 105:732–738PubMedGoogle Scholar
  113. 106.
    Schoeffter P, Hoyer D (1989) How selective is GR43175? Interactions with functional 5-HT1A, 5-HT 1B, 5-HT1C and 5-HT1D receptors. Naunyn-Schmiedeberg’s Arch Phanmacol 340:135–138Google Scholar
  114. 107.
    Schoeffter P, Waeber C, Palacios JM (1988) The 5-hydroxytryptamine 5-HT 1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn-Schmiedeberg’s Arch Pharmacol 337:602–608Google Scholar
  115. 108.
    Schoups AA, De Potter WP (1988) Species dependence of adaptations at the pre- and postsynaptic serotonergic receptors following long-term antidepressant drug treatment. Biochem Pharmacol 37:4451–4460PubMedGoogle Scholar
  116. 109.
    Sicuteri F, Tesd A, Anselmi B (1961) Biochemical investigations in headache: increase in the hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy 19:55–58Google Scholar
  117. 110.
    Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989PubMedGoogle Scholar
  118. 111.
    Törk I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600:9–35PubMedGoogle Scholar
  119. 112.
    Tyers MB, Bunce KT, Humphrey PPA (1989) Pharmacological and antiemetic properties of ondansetron. Eur J Cancer Clin Oncol 25:S15-S19PubMedGoogle Scholar
  120. 113.
    Varrauh A, Bockaert J (1992) Differential coupling of 5-HT1A receptors occupied by 5-HT or 8-OH-DPAT to adenylyl cylase. Naunyn-Schmiedeberg’s Arch Pharmacol 346:367–374Google Scholar
  121. 114.
    Verbeuren TJ (1989) Synthesis, storage, release, and metabolism of 5-hydroxytryptamine in peripheral tissues. In: Fozard JR (ed) The peripheral actions of 5-hydroxytryptamine. Oxford University Press, Oxford, pp 1–25Google Scholar
  122. 115.
    Waeber C, Hoyer D, Palacios JM (1989)5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS 205–930. Neuroscience 31:393–400PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Manfred Göthert

There are no affiliations available

Personalised recommendations