A Knowledge Base Model for the Interpretation of Radiographic Densities

  • Giovanni Braccini
  • Davide Caramella
  • Ovidio Salvetti
Conference paper
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 45)


A knowledge base model suitable for automatic interpretation of densities in digital X-ray images is proposed.

A layered model is defined containing relevant knowledge, processes using this knowledge and results provided by the processes themselves.

In particular, a three-level approach is proposed: identification of images, their projection and relative quality control; extraction of significant characteristics relative to normal or pathological signs; formulation of the diagnostic hypotheses considering also historical, clinical and laboratory data.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Salvetti, G. Braccini and A. Frassineti, A Distributed Environment for Quality Control and Diagnosis of Medical Images, Mini & Microcomputers and their Applications, E. Luque Ed., Acta Press, 1988, pages 568–573.Google Scholar
  2. [2]
    G. Braccini, A. Frassineti and O. Salvetti,, A Database Model for an Intelligent System Oriented to Acute Abdomen Image Understanding, Proc. of the 33rd National Congress SIRMN of Radiology, Monduzzi Ed., 1988, pages 405–409Google Scholar
  3. [3]
    O. Salvetti, G. Braccini and A. Frassineti, A Knowledge Base for Digital Radiographic Image Understanding in Acute Abdomen, Proc. of the IASTED Int. Symposium “Expert Systems Theory & Applications”, M.H. Hamza Ed., Acta Press, 1989, pages 312–314.Google Scholar
  4. [4]
    L. Azzarelli, M. Chimenti, O. Salvetti, H. Bruenig and H. Niemann, Interactive Processing and Archiving of Images, Image and Vision Computing, Vol. 8, No. 3, 1990.Google Scholar
  5. [5]
    G. Braccini, R. Evangelista, A. Frassineti and O. Salvetti, A methodology for automatic understanding of densities in digital images, Proc. IASTED Int. Conf. on Expert Systems and Neural Networks, M.H. Hamza Ed., Acta Press, 1990, pages 174–178.Google Scholar
  6. [6]
    R. Bozzi, E. Fantini, O. Salvetti, BIS386™: Biomedical Imaging System, Italian Patent No. 10128C /90; 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Giovanni Braccini
    • 1
  • Davide Caramella
    • 2
  • Ovidio Salvetti
    • 3
  1. 1.Cattedra di RadiologiaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Fisiopatologia ClinicaUniversità di FirenzeFirenzeItaly
  3. 3.Istituto di Elaborazione della InformazioneCNRPisaItaly

Personalised recommendations