A Knowledge Base Model for the Interpretation of Radiographic Densities

  • Giovanni Braccini
  • Davide Caramella
  • Ovidio Salvetti
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 45)


A knowledge base model suitable for automatic interpretation of densities in digital X-ray images is proposed.

A layered model is defined containing relevant knowledge, processes using this knowledge and results provided by the processes themselves.

In particular, a three-level approach is proposed: identification of images, their projection and relative quality control; extraction of significant characteristics relative to normal or pathological signs; formulation of the diagnostic hypotheses considering also historical, clinical and laboratory data.


Plain Film Pathological Sign Automatic Interpretation Diagnostic Hypothesis Symbolic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Salvetti, G. Braccini and A. Frassineti, A Distributed Environment for Quality Control and Diagnosis of Medical Images, Mini & Microcomputers and their Applications, E. Luque Ed., Acta Press, 1988, pages 568–573.Google Scholar
  2. [2]
    G. Braccini, A. Frassineti and O. Salvetti,, A Database Model for an Intelligent System Oriented to Acute Abdomen Image Understanding, Proc. of the 33rd National Congress SIRMN of Radiology, Monduzzi Ed., 1988, pages 405–409Google Scholar
  3. [3]
    O. Salvetti, G. Braccini and A. Frassineti, A Knowledge Base for Digital Radiographic Image Understanding in Acute Abdomen, Proc. of the IASTED Int. Symposium “Expert Systems Theory & Applications”, M.H. Hamza Ed., Acta Press, 1989, pages 312–314.Google Scholar
  4. [4]
    L. Azzarelli, M. Chimenti, O. Salvetti, H. Bruenig and H. Niemann, Interactive Processing and Archiving of Images, Image and Vision Computing, Vol. 8, No. 3, 1990.Google Scholar
  5. [5]
    G. Braccini, R. Evangelista, A. Frassineti and O. Salvetti, A methodology for automatic understanding of densities in digital images, Proc. IASTED Int. Conf. on Expert Systems and Neural Networks, M.H. Hamza Ed., Acta Press, 1990, pages 174–178.Google Scholar
  6. [6]
    R. Bozzi, E. Fantini, O. Salvetti, BIS386™: Biomedical Imaging System, Italian Patent No. 10128C /90; 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Giovanni Braccini
    • 1
  • Davide Caramella
    • 2
  • Ovidio Salvetti
    • 3
  1. 1.Cattedra di RadiologiaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Fisiopatologia ClinicaUniversità di FirenzeFirenzeItaly
  3. 3.Istituto di Elaborazione della InformazioneCNRPisaItaly

Personalised recommendations