GuideLines in the Development of the Theory of Chemical Reactivity Using the Potential Energy Surface (PES) Concept

  • D. Heidrich
  • W. Kliesch
  • W. Quapp
Part of the Lecture Notes in Chemistry book series (LNC, volume 56)


The PES concept forms the basis for a variety of theories, models and methods for the study of chemical reactivity. These methods represent a variety of classical, semiclassical, and completely quantum-mechanical methodologies with different degrees of accuracy and applicability to perform calculations of microscopic and macroscopic attributes of chemical reactions. Beyond the investigation of reaction mechanisms, problems which arise from multiphoton excitations in a hypothetical mode-specific chemistry may also be analysed on the basis of the FES concept. Its realization depends on the extent of the intramolecular vibrational redistribution (IVR) which may also be attributed to special PES properties


Potential Energy Surface Minimum Energy Path Tion State Theory Polyatomic System Variational Tion State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Chapter 1)

  1. a Cf. for example: Woolley RG (1978) J Amer Chem Soc 100:1073 and (1982) Structure and Bonding 52:1, b Claverie P, Diner S (1980) Isr J Chem 19:54, c Weiniger SH (1984) J Chem Educ 61:339, d Woolley RG (1985) J Chem Educ 62:1082, e Amann A, Gans W (1989) Angew Chem 101:277(p 284) and references in these papersGoogle Scholar
  2. 2.
    cf. for instance: Boldyrev AI, Charkin OP, Bochenko KV, Klimenko NM Rambidi NG (1979) Russ J Inorg Chem 24:341, Haruani J, Serre J (eds) (1983) Symmetries and Properties of Nonrigid Molecules, Elsevier, Amsterdam; Schleyer PvR, Sawaryn A, Reed AE, Hobza P(1986) J Comput Chem 7:666; Winnewisser BP (1985) in: Molecular Spectroscopy: Modern Research, Academic Press, Orlando, Vol 3, Chap 6, p 321Google Scholar
  3. 3.
    Kutzelnigg W (1978) Einführung in die Theoretische Chemie, Band 2, Verlag Chemie, WeinheimGoogle Scholar
  4. 4.
    Zülicke L (1985) Quantenchemie, Band 2, VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  5. 5.
    Hirst DM (1985) Potential Energy Surfaces, Taylor & Francis, London - PhiladelphiaGoogle Scholar
  6. 6.
    Mezey PG (1987) Potential Energy Hypersurfaces (Studies in Physical and Theoretical Chemistry 53 ), Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Miller WH (1983) J Phys Chem 87: 3811CrossRefGoogle Scholar
  8. 8.
    For a fine illustration cf. Müller K (1980) Angew Chem, Int Ed Engl 19: 1CrossRefGoogle Scholar
  9. 9.
    cf. for instance: a Friedrich B, Herman Z, Zahradnik R, Havlas Z (1988) in: Advances in Quantum Chemistry, Vol 19, p 247, Academic Press; b Slanina Z (1986) Contemporary Theory of Chemical Isomerism, Academia/ReidelGoogle Scholar
  10. 10.
    Pelzer H, Wigner E (1932) Z Phys Chem, Abt B 15:445; Eyring H (1935) J Chem Phys 3: 107Google Scholar
  11. 11a.
    Glasstone S, Laidler KJ, Eyring H (1941) The Theory of Rate Pro-cesses, McGraw-Hill, New York; Jb Laidler KJ (1969) Theories of Chemical Reaction Rates, McGraw- Hill, New ork, a) p 78; c cf.especially: (1983) J Phys Chem 87: number 15, dedicated to Eyring; d Laidler KJ, King MC (1983) J Phys Chem 87:2657; e Kreevoy MM, Truhlar DG (1986) in: Weissberger A (ed) Techniques of Chemistry, Vol 6: Bernasconi CF (ed), part 1, p 13, Wiley, New York, and literature thereinGoogle Scholar
  12. 12.
    Mezey PG (1980) Theoret Chim Acta 54: 95Google Scholar
  13. 13.
    Havlas Z, Zahradnik R (1984) Int J Quantum Chem 26: 607CrossRefGoogle Scholar
  14. 14.
    Fukui K (1970) J Phys Chem 74: 4161CrossRefGoogle Scholar
  15. 15a.
    Tachibana Af Fukui K (1979) Theoret Chim Acta 51: 189 b Ruf AR, Miller WH (1988) J Chem Soc (Faraday Trans 2) 84:1523 16a Pechukas P (1976) J Chem Phys 64:1516; b Tachibana A, Okazaki I, Koizumi M, Hori K, Yamabe T (1985) J Am Chem Soc 107:1190; c Tachibana A, Fueno H, Yamabe T (1986) J Amer Chem Soc 108: 4346Google Scholar
  16. 17.
    for instance: a Pancir P (1977) Collect Czech Chem Commun 42:16; b Banerjee A, Adams N, Simons J (1985) J Phys Chem 89:52; c Baker J (1986) J Comput Chem 7:385; d Kliesch W, Schenk K, Heidrich D, Dachsel H (1988) J Comput Chem 9:810; e Basilevski MV, Shamov AG (1981) Chem Phys 60:347Google Scholar
  17. 18a.
    Basilevsky MV (1982) Chem Phys 67:337; b Hoffman DK, Nord RS, Ruedenberg K (1986) Theor Chim Acta 69:265; c Quapp W (1989) Theor Chim Acta 75: 447Google Scholar
  18. 19.
    Baker J, Gill PMW (1988) J Comput Chem 9: 465CrossRefGoogle Scholar
  19. 20a.
    Hartke B, Manz J (1988) J Amer Chem Soc 110:3063; b survey for describing tunnelling paths: Schatz GC (1987) Chem Rev 87: 81Google Scholar
  20. 21.
    Parr CA, Polanyi JC, Wong WH (1973) J Chem Phys 58: 5CrossRefGoogle Scholar
  21. 22a.
    Page M, Mclver J (1988) J Chem Phys 88:922; b Gonzales C, Schlegel HB (1990) J Chem Phys 90:2154 and J Phys Chem 94:5523; c Page M, Doubleday Ch, Mclver JW,Jr (1990) J Chem Phys 93: 5634Google Scholar
  22. 23.
    Wilson EB, Decius JC, Cross PC (1955) Molecular Vibrations, McGraw-Hill, New YorkGoogle Scholar
  23. 24a.
    Quapp W, Heidrich D (1984) Theoret Chim Acta 66:245; Jb Quapp W, Dachsel H, Heidrich D (1990) J Molec Struct 205: 245Google Scholar
  24. 25.
    Schlegel HB (1987) in: Lawley KP (ed) Ab initio Methods in Quantum Chemistry-I, Advances in Chemical Physics, Vol 68, Prigogine I, Rice SA (eds) Wiley, New York, a) pp 253, 278Google Scholar
  25. 26.
    Walet NR, Klein A, Do Dang G (1989) J Chem Phys 91: 2848CrossRefGoogle Scholar
  26. 27.
    Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87: 2664CrossRefGoogle Scholar
  27. 28.
    Troe J (1988) Ber Bunsenges Phys Chem 92: 243Google Scholar
  28. 29a.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440; b Truhlar DG, Garrett BC (1984) Ann Rev Phys Chem 36: 159Google Scholar
  29. 30.
    Marcus RA (1988) JCS Farad Trans 2 84: 1237CrossRefGoogle Scholar
  30. 31.
    Truhlar DG, Steckler R, Gordon MS (1987) Chem Rev 87:217, and references thereinGoogle Scholar
  31. 32.
    Tucker SC, Truhlar DG (1989) in: Bertran J, Csizmadia (eds) New Theoretical Concepts for Understanding Organic Reactions, Kluwer Acad Pubi, Dordrecht, NATO ASI Series, Vol 267 (Series C) p 291Google Scholar
  32. 33.
    Song K, Chesnavich WJ (1989) J Chem Phys 91:4664 and references thereinGoogle Scholar
  33. 34.
    Marcus RA (1968) J Chem Phys 49:2610; Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99; Morokuma K, Kato S (1981) in: Truhlar DG (ed) Potential Energy Surfaces and Dynamics Calculations, Plenum, New YorkGoogle Scholar
  34. 35.
    Miller WH (1986) in: Clary DC (ed) The Theory of Chemical Reaction Dynamics, Reidel, Dordrecht, p 27Google Scholar
  35. 36.
    Basilevsky MV (1977) Chem Phys 24: 81CrossRefGoogle Scholar
  36. 37.
    Further references in Refs 31,38Google Scholar
  37. 38.
    Colwell SM (1988) Theor Chim Acta 74: 123CrossRefGoogle Scholar
  38. 39.
    Ryaboy VM (1989) Chem Phys Letters 159: 371CrossRefGoogle Scholar
  39. 40.
    Miller WH, Ruf, BA, Tyng Y (1988) J Chem Phys 89: 6298CrossRefGoogle Scholar
  40. 41.
    Shida N, Barbara PF, Almif JE (1989) J Chem Phys 99: 4061CrossRefGoogle Scholar
  41. 42.
    Kato S, Fukui K (1976) J Amer Chem Soc 98: 6395CrossRefGoogle Scholar
  42. 43.
    cf. for instance: Nikitin EE, Zülicke L (1978) Theory of Chemical Elementary Processes, Lecture Notes in Chemistry, Vol 8, Springer- Verlag, Berlin, New York; Urena AG (1987) in:Prigogine I, Rice SA (eds) Advances in Chemical Physics, Vol LXVI, Wiley, New YorkGoogle Scholar
  43. 44a.
    Polanyi JC, Prisant MG, Wright JS (1987) J Phys Chem 91:4727; b Polanyi JC (1987) Science 236:689; c Brooks PR (1988) Chem Rev 88:407; d Pollak E, Schlier Ch (1989) Acc Chem Res 22:223; e Gomez Lorente JM, Pollak E (1989) J Chem Phys 90:5406; f Metz RB, Kitsopoulos T, Weaver A, Neumark DM (1990) J Phys Chem 94:2240; g Zeweil AH, Bernstein RB (1988) Chem Eng News 66(45):24; h Schatz GC (1990) J Phys Chem 94: 6157Google Scholar
  44. 45.
    For further textbooks or surveys see for example: a Pritchard HO (1984) The Quantum Theory of Unimolecular Reactions, Cambridge University Press, Cambridge; b Robinson PJ, Holbrook KA (1972) Unimolecular Reactions, Wiley- Interscience, London, New York, Sydney, Toronto; c Hase WL (1983) Acc Chem Res 16:258Google Scholar
  45. 46.
    Kramers HA (1940) Physica 7: 284CrossRefGoogle Scholar
  46. 47.
    Hynes JT (1985) in: Baer M (ed) Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton FL, Vol 4, p 171Google Scholar
  47. 48.
    Bertran J (1989) in: Bertraft J, Csizmadia IG (eds) New Theoretical Concepts for Understanding Organic Reactions, Kluwer Acad Pubi, Dordrecht, NATO ASI Series, Vol 267 (Series C), p 231Google Scholar
  48. 49.
    Tucker SC, Truhlar DG (1989) in: ibid, p 331Google Scholar
  49. 50.
    Overview by: Bernasconi CF (1987) Acc Chem Res 20:301Google Scholar
  50. 51a.
    cf. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio MO Theory, Wiley, New York b Kutzelnigg W (1988) in: J Mol Struct (Theochem) Present and Future Trends in Quantum Chemical Calculations, 181: 33–54Google Scholar
  51. 52.
    Simons J (1991) J Phys Chem 95: 1017CrossRefGoogle Scholar
  52. 53.
    Altona C, Faber DH (1974) Topics in Current Chem, Vol 45, Springer Verlag, Berlin; Burkert U, Allinger NL (1982) Molecular Mechanics,ACS Monograph 177, Am Chem Soc, Washington; Clark T (1985) A Handbook of Computational Chemistry, Wiley- Interscience, New York (Chap. 2 and Refs therein); Rasmussen K (1985) Potential Energy Functions in Conformational Analysis (Lecture Notes in Chemistry, Vol 37) Springer Verlag, Berlin; Allinger NL (1989) J Am Chem Soc 111:8551,8566,8576; (1990) 112: 8293, 8307Google Scholar
  53. 54.
    Ermer O (1981) Aspekte von Kraftfeldrechnungen, Wo1fgang-Baur-Ver-lag, MünchenGoogle Scholar
  54. 55.
    cf. the short and clear survey by Pulay P (1987) in: Lawley KP (ed) Ab initio Methods in Quantum Chemistry-II, Advances in Chemical Physics, Vol 69, Prigogine I, Rice SA (eds), Wiley, New YorkGoogle Scholar
  55. 56a.
    Bartlett RJ, Silver MD (1975) J Chem Phys 62:325 Jb Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem, Symp 10: 1Google Scholar
  56. 57.
    Meyer W (1973) J Chem Phys 58:1017,Google Scholar
  57. 58.
    Ahlrichs R, Lischka H, Staemmler V, Kutzelnigg W (1975)J Chem Phys 62: 1225Google Scholar
  58. 59.
    izek J (1966) J Chem Phys 45: 4256CrossRefGoogle Scholar
  59. 60a.
    Davidson ER, Feller D (1986) Chem Rev 86:681; Jb iarsky P, Urban M (1980) Ab initio Calculations (Lecture Notes in Chemistry, Vol 16 ), Springer Verlag, BerlinGoogle Scholar
  60. 61.
    Del Bene JE (1986) in: Liebmann JF, Greenberg A (eds) Molecular Structure and Energetics, Vol 1, VCH Publ., p 319Google Scholar
  61. 62.
    Sauer J (1989) Chem Rev 89:199 (prologue)Google Scholar
  62. 63.
    Spitznagel GW, Clark T, Chandrasekhar J, Schleyer PvR (1982) J Comput Chem 3: 363CrossRefGoogle Scholar
  63. 64.
    Hiberty PC, Lefour JM (1987) J Chim Phys et Phys Chim Biol 84: 607Google Scholar
  64. 65.
    Cooper DL, Gerratt J, Raimondi M (1987) in: Lawley KP (ed) Ab initio Methods in Quantum Chemistry-II, Advances in Chemical Physics, Vol 69, Prigogine I, Rice SA (eds) Wiley, New YorkGoogle Scholar
  65. 66.
    Van Lenthe JH, van Duijneveldt-van de Rijdt JGCM, van Duijneveveldt FB (1987) ibidGoogle Scholar
  66. 67.
    Hobza P, Zahradnik R (1988) Chem Rev 88:87 .Google Scholar
  67. 68.
    Chalasinski G, Gutowski M (1988) Chem Rev 88: 943CrossRefGoogle Scholar
  68. 69.
    Pulay P (1970) Dissertation, StuttgartGoogle Scholar
  69. 70.
    Pulay P (1977) in: Schaefer HF (ed) Applications of Electronic Structure Theory, Plenum, New York, p 153Google Scholar
  70. 71.
    Mclver JW, Komornicki A (1971) Chem Phys Lett 10: 303CrossRefGoogle Scholar
  71. 72.
    Mclver JW, Komornicki,A (1972) J Am Chem Soc 94: 2625CrossRefGoogle Scholar
  72. 73.
    Rinaldi D, Rivail J-L (1972) C R Acad Sei 274:1664; Pulay P, Török F (1973) Mol Phys 25:1153; Pancir J (1973) Theor Chim Acta 29:21; Grimmer M, Heidrich D (1973) Z Chem 13: 356;Google Scholar
  73. 74.
    Komornicki A, Ishida K, Morokuma K, Ditchfield R, Conrad M (1977) Chem Phys Lett 45: 595CrossRefGoogle Scholar
  74. 75.
    Schlegel HB (1975) Ph D thesis, Queens University, Kingston, Ontario, CanadaGoogle Scholar
  75. 76.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem Symp 13: 225Google Scholar
  76. 77.
    Pople JA, Schlegel HB, Krishnan R, DeFrees DJ, Binkley JS, Frisch MJ, Whiteside RA, Hout RJ, Hehre WJ (1981) Int J Quantum Chem Symp 15: 269Google Scholar
  77. 78.
    For reference see for instance: Jorgensen P, Simons J (eds)(1986) Geometrical Derivatives of Energy Surfaces and Molecular Properties, Reidel, Dordrecht; Bernardi F, Robb MA (1987) in: Lawley KP (ed) Advances in Chemical Physics, Vol 67/1, Wiley-Interscience, p 155; Amos RD, Gaw JF, Handy, NC, Carter S (1988) JCS, Faraday Trans 2, 84:1247; Amos RD, Rice JE (1988) Program CADPAC: The Cambridge Analytic Derivatives Package, University of Cambridge, Cambridge, England; Dupuis M, Watts JD, Villar HO, Hurst GJB (1987) Program HONDO: Version 7.0; Frisch MJ, Head-Gordon M, Schlegel HB, Raghavachari K, Binkley JS, Gonzalez C, DeFrees D, Fox DJ, Whiteside RA, Seeger R, Melius CF, Kahn LR, Stewart JJP, Fluder EM, Topiol S, Pople JA (1988) Program GAUSSIAN 88; Gaussian, Inc: Pittsburgh PA; Ahlrichs R, Bär M, Ehrig M, Häser M, Horn H, Kölmel Ch (1989) Program TURBOMOLE, Version 2.0 Beta, Universität Karlsruhe (suited for workstations) and other ones, cf. also: Clementi E (ed)(1990) Modern Techniques in Computational Chemistry: MOTECC-90, ESCOM, LeidenGoogle Scholar
  78. 79.
    cf. Osamura (1989) Theoret Chim Acta 76:113, and references thereinGoogle Scholar
  79. 80.
    Bingham RC, Dewar MJS, Lo DH (1975) J Am Chem Soc 97: 1285, 1294CrossRefGoogle Scholar
  80. 81.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99: 4899, 4907CrossRefGoogle Scholar
  81. 82.
    Dewar MJS, Zoebisch EG, Healy EF, Steward JP (1985) J Am Chem Soc 107: 3902CrossRefGoogle Scholar
  82. 83.
    see for instance: Dewar MJS, Ford GP (1977) J Am Chem Soc 99: 1685Google Scholar
  83. 84.
    see for instance: Dewar MJS, Ford GP (1977) J Am Chem Soc 99: 7822Google Scholar
  84. 85.
    Madura JD, Pettitt BM, Mc Cammon JA (1987) Chem Phys Letters 141:83, (1989) Chem Phys 129: 185Google Scholar
  85. 86.
    Jorgensen WL (1989) Acc Chem Res 22: 184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • D. Heidrich
    • 1
  • W. Kliesch
    • 2
  • W. Quapp
    • 2
  1. 1.Sektion ChemieUniversität LeipzigLeipzigDeutschland
  2. 2.Sektion MathematikUniversität LeipzigLeipzigDeutschland

Personalised recommendations