Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 53))

  • 239 Accesses

Abstract

The electronic energy of diatomic molecules as a function of the distance between the atoms is usually expanded around any of the following points: the united atom, the separated atoms or equilibrium. This last possibility is only valid for bound molecular states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References of Chapter XX

  1. W.A. Bingel, J. Chem. Phys. 30 (1959) 1250.

    Google Scholar 

  2. D.M. Duparc and R.A. Buckingham, Proc. Phys. Soc. 83 (1964) 731.

    Article  CAS  Google Scholar 

  3. W. Byers-Brown and E. Steiner, J. Chem. Phys. 44 (1966) 3934.

    Google Scholar 

  4. D.I. Abramov and S. Yu. Slavyanov. J. Phys. B 11 (1978) 2229.

    Article  CAS  Google Scholar 

  5. J. Goodisman, Diatomic Interaction Potential Theory, Vol.I:Fundamentals; vol. II: Applications, Academic Press, New York & London, 1973.

    Google Scholar 

  6. H. Wind, J. Chem. Phys. 42 (1965) 2371.

    Google Scholar 

    Google Scholar 

  7. R.J. Damburg and R.Kh. Propin, J. Phys. B 1 (1963) 631.

    Google Scholar 

  8. J.D. Morgan III and B. Simon, Int. J. Quantum Chem. 16 (1980) 1143.

    Article  Google Scholar 

  9. E. Brézin and J. Zinn-Justin, J. Physique 40 (1979) L 511.

    Google Scholar 

  10. J. Cízek, M.R. Clay and J. Paldus, Phys. Rev. A 22 (1930) 793.

    Google Scholar 

  11. J. Cízek and E. Vrscay, Int. J. Quantum Chem. 21 (1932) 27.

    Article  Google Scholar 

  12. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand-Reinhold, Princeton, 1950.

    Google Scholar 

  13. E.A. Mason and L. Monchick, Adv. Chem. Phys. 12 (1967) 329.

    Google Scholar 

  14. J.F. Ogilvie and R.H. Tipping, Int. Rev. Phys. Chem. 3 (1933) 3.

    Google Scholar 

  15. J.L. Dunham, Phys, Rev. 41 (1932) 721.

    Google Scholar 

  16. M.V. Berry and K.E. Mount, Rep. Prog. Phys. 35 (1972) 315. /17/ I. Sandeman, Proc. R. Soc. Edinburgh 60 (1940) 210.

    Google Scholar 

  17. I. Sandeman, Proc. R. Soc. Edinburgh 60 (1940) 210.

    Google Scholar 

  18. J.E. Kilpatrick, J. Chem. Phys. 30 (1959) 301.

    Google Scholar 

  19. C.L. Pekeris, Phys, Rev. 45 (1934) 93.

    Article  Google Scholar 

  20. P.R. Bunker, J. Mol. Spectrosc. 35 (1970) 306.

    Article  CAS  Google Scholar 

  21. R. Rydberg, Z. Physik 73 (1931) 376.

    Article  Google Scholar 

  22. O. Klein, Z. Physik 76 (1932) 226.

    Article  CAS  Google Scholar 

  23. A.L.G. Rees, Proc, R. Soc. London Ser. A 59 (1947) 993.

    Google Scholar 

  24. J.T. Vanderslice, E.A. Mason, W.G. Maisch and E.R. Lippincott, J. Mol. Spectrosc. 3 (1959) 17.

    Article  CAS  Google Scholar 

  25. W.R. Jarmain, Can. J. Phys. 38 (1960) 217.

    CAS  Google Scholar 

  26. W.G. Richards and R.F. Barrow, Trans. Faraday Soc. 60 (1964) 797.

    Google Scholar 

  27. R. Zare, J. Chem. Phys. 40 (1964) 1934.

    Google Scholar 

  28. F.R. Gilmore, J. Quant. Spectrosc. Radiat. Transfer. 5 (1965) 369; C.R. Vidal, Comments At. Mol. Phys. 17 (1936) 173; I.P. Hamilton, J.C. Light and K. B. Whaley, J. Chem. Phys. 35 (1936) 5151.

    Google Scholar 

  29. R.H. Davies and J.T. Vanderslice, Can, J. Phys. 44 (1966) 219.

    Google Scholar 

    Google Scholar 

  30. E.W. Kaiser, J. Chem. Phys. 53 (1970) 1686.

    Google Scholar 

  31. .N. Huffaker, J. Mol. Spectrosc. 65 (1977) 1.

    Article  Google Scholar 

  32. K.D. Jordan, J.L. Kinsey and R. Silbey, J. Chem. Phys. 61 (1974) 911.

    Article  CAS  Google Scholar 

  33. G. Simons, R.G. Parr and J.M. Finlan, J. Chem. Phys. 59 (1973) 3229.

    Article  CAS  Google Scholar 

  34. A. Thakkar, J. Chem. Phys. 62 (1975) 1693.

    Google Scholar 

    Google Scholar 

  35. R. Engelke, J. Chem.Phys. 63 (1978) 3514.

    Article  Google Scholar 

  36. R. Engelke, J. Chem. Phys. 70 (1979) 3745.

    Google Scholar 

  37. L. Mattera, C. Salvo, S. Terreni and F. Tommasini, J. Chem. Phys 72 (1980) 6815.

    Article  CAS  Google Scholar 

  38. J.F. Ogilvie, Proc. R. Soc. London Ser. A 373 (1981) 287.

    Google Scholar 

  39. C.L. Beckel and R. Engelke, J. Chem. Phys. 49 (1968) 5199.

    Google Scholar 

  40. C.L. Beckel, J. Chem.Phys. 65 (1976) 4319.

    Google Scholar 

  41. A. Pardo, Chem. Phys. Lett. 131 (1986) 490.

    Google Scholar 

  42. G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.

    Google Scholar 

  43. G.A. Arteca, F.M. Fernandez and E.A. Castro, J. Chem. Phys. 81 (1984) 4540.

    Google Scholar 

  44. K. Kratzer, Z. Physik 3 (1920) 239.

    Google Scholar 

  45. K. Kratzer, Ann. Physik 67 (1922) 127.

    Article  Google Scholar 

  46. E. Fues, Ann. Physik 30 (1926) 367.

    Article  Google Scholar 

  47. S. Flügge, Practical Quantum Mechanics, Springer International Student Edition, Berlin, 1979; A Requena, J. Zdniga, L.M. Fuentes and H. Hidalgo, J. Chem. Phys. 35 (1936) 3939 (and other references quoted therein).

    Google Scholar 

  48. J.M. Herbelin and G. Emanuel, J. Chem. Phys. 60 (1974) 689.

    Google Scholar 

  49. J.F. Ogilvie, W.R. Rodwell and R.H. Tipping, J. Chem. Phys. 73 (1930) 5221.

    Google Scholar 

  50. W.T. Zemke and W.C. Stwalley, J. Chem. Phys. 73 (1980) 558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arteca, G.A., Fernández, F.M., Castro, E.A. (1990). FM and Vibrational Potentials of Diatomic Molecules. In: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics. Lecture Notes in Chemistry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93469-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93469-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52847-0

  • Online ISBN: 978-3-642-93469-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics