Properties of the FM: Series with Non-Zero Convergence RADII.

  • G. A. Arteca
  • F. M. Fernández
  • E. A. Castro
Part of the Lecture Notes in Chemistry book series (LNC, volume 53)


The aim of this chapter is to analyse the possibilities of the FM to increase the convergence radii of the power series expansions of some simple functions. For this purpose, we will consider here functions that have square-root type branch-points. Such functions lead to power series expansions with nonzero finite convergence radius.


Taylor Expansion Power Series Expansion Geometrical Series Convergence Radius Sensitivity Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References of Chapter XIV

  1. /1/.
    P.J. Ellis and E. Osnes, Phys. Lett. B 45 (1973) 425.CrossRefGoogle Scholar
  2. /2/.
    J.M. Leinaas and E. Osnes, Phys. Scr. 22 (1930) 193.CrossRefGoogle Scholar
  3. /3/.
    K. Bhattacharyya, Int. J. Quantum Chem. 20 (1981) 1273.Google Scholar
  4. /4/.
    E.E. Nikitin, Therory of Non-Adiabatic Transitions, in: H. Hartman (Ed.), Chemische Elementarprozesse, Springer Verlag, Berlin, 1963.Google Scholar
  5. /5/.
    G.A. Arteca, F.M. Fernandez and E.A. Castro, J. Math. Phys. 25 (1984) 2377.Google Scholar
  6. /6/.
    G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.Google Scholar
  7. /7/.
    P.M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 2, McGraw-Hill, New York, 1953.Google Scholar
  8. /8/.
    J. Killingbeck, Rep. Prog. Phys. 40 (1977) 963.CrossRefGoogle Scholar
  9. /9/.
    K. Bhattacharyya, J. Phys. B 14 (1931) 733.Google Scholar
  10. /10/.
    R. Seznec and J. Zinn-Justin, J. Math. Phys. 20 (1979) 1398.Google Scholar
  11. /11/.
    J.C. Le Guillou and J. Zinn-Justin, Ann. Phys. (NY) 147 (1933) 57.CrossRefGoogle Scholar
  12. /12/.
    S. Flügge, Practical Quantum Mechanics, Springer Verlag, International Student Edition, Berlin, 1979.Google Scholar
  13. /13/.
    S.A. Maluendes, F.M. Fernández y E.A. Castro, Folia Chim. Theor. Lat. 11 (1983) 23.Google Scholar
  14. /14/.
    S.A. Maluendes, F.M. F.rnández and E.A. Castro, J. Mol. Spectrosc. 100 (1933) 24.Google Scholar
  15. /15/.
    S.A. Maluendes, F.M. Fernández and E.A. Castro, Match 16 (1984) 95.Google Scholar
  16. /16/.
    S.A. Maluendes, F.M. Fernández and E.A. Castro, Phys. Rev. A 28 (1983) 2059.Google Scholar
  17. /17/.
    S.A. Maluendes, F.M. Fernández and E.A. Castro, J. Mol. Spectrosc. 104 (1934) 330.Google Scholar
  18. /18/.
    S.A. Maluendes, F.M. Fernández and E.A. Castro, Phys. Rev. A 30 (1984) 2227.Google Scholar
  19. /19/.
    S.A. Maluendes, Ph.D. Thesis, La Plata University, 1986.Google Scholar
  20. /20/.
    R. Propin, J. Phys. B 11 (1978) 257.CrossRefGoogle Scholar
  21. /21/.
    F.M. Fernandezy E.A. Castro, Phys. Lett. A 107 (1935) 83.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. A. Arteca
    • 1
  • F. M. Fernández
    • 1
  • E. A. Castro
    • 1
  1. 1.División Química Teórica, Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations