Advertisement

Geometrical Connection Between the VFM and the JWKB Method

  • G. A. Arteca
  • F. M. Fernández
  • E. A. Castro
Part of the Lecture Notes in Chemistry book series (LNC, volume 53)

Abstract

Previous paragraphs were devoted to discussing several functional energy representations of physical systems, through the generalization of semiclassical relationships, and the Heisenberg inequalities or the de Broglie hypothesis. It has been shown that all these approximations lead to eigenvalues depending on quantum numbers and parameters contained within the Hamiltonian, similarly to those obtained via the JWKB method and the variational theorem /1–13/ (see Chapter VI).

Keywords

Power Series Expansion Anharmonic Oscillator Elliptical Approximation Phase Space Trajectory Classical Turning pOints 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References of Chapter XII

  1. /1/.
    G. Rosen, Phys. Rev. A 20 (1979) 1287.Google Scholar
  2. /2/.
    F.M. Fernandez and E.A. Castro, Phys. Rev. A 27 (1933) 2735.Google Scholar
  3. /3/.
    K. Banerjee, Proc. R. Soc. London Ser. A 380 (1932) 489.CrossRefGoogle Scholar
  4. /4/.
    H.A. Gersch and C.H. Braden, Am. J.Phys. 50 (1982) 53.CrossRefGoogle Scholar
  5. /5/.
    F.M. Fernandez and E.A. Castro, Am. J. Phys.52 (1934) 344; 453.Google Scholar
  6. /6/.
    R. McWeeny and C.A. Coulson, Proc. Camb. Philos. Soc. 44 (1943) 413Google Scholar
  7. /7/.
    D. Gromes and I.O. Stamatescu, Nucl. Phys. B 112 (1976) 213.Google Scholar
  8. /8/.
    / D. Gromes and I.O. Stamatescu, Z. Physik C 3 (1979) 43.CrossRefGoogle Scholar
  9. /9/.
    J. Dias de Deus, A.B. Henriques and J.M.R. Pulido, Z. Physik C 7 (1931) 157.CrossRefGoogle Scholar
  10. /10/.
    F.M.Fernandez and E.A. Castro, Am. J. Phys. 50 (1902) 921.Google Scholar
  11. /11/.
    F.M. Fernandez and E.A. Castro, Phys. Rev. A 27 (1933) 663.CrossRefGoogle Scholar
  12. /12/.
    F.M. Fernandez and E.A. Castro, J. Chem. Phys. 79 (1933) 321.Google Scholar
  13. /13/.
    E. Gerck, J.A.C. Gallas and A.B. Oliveira, Phys. Rev. A 26 (1932) 662.CrossRefGoogle Scholar
  14. /14/.
    G.A. Arteca, F.M. Fernandez and E.A. Castro, J. Math. Phys. 25 (1934) 932.CrossRefGoogle Scholar
  15. /15/.
    F.M. Fernandez, G.A. Arteca and E.A. Castro, Physica A 122 (1933) 37.CrossRefGoogle Scholar
  16. /16/.
    B. Simon, Ann. Phys. (NY) 58 (19701 76.Google Scholar
  17. /17/.
    F.T. Hioe and E. Montroll, J. Ilath. Phys. 16 (1975) 1945.Google Scholar
  18. /18/.
    X. Banerjee, Proc. R. Soc. London Ser A 364 (1973) 265.CrossRefGoogle Scholar
  19. /19/.
    M.V. Berry and K.E. Mount, Rep. Prog. Phys. 35 (1972) 315.CrossRefGoogle Scholar
  20. /20/.
    F.M. Fernandez, G.A. Arteca and E.A. Castro, J. Chem. Phys. 30 (1934) 5659.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. A. Arteca
    • 1
  • F. M. Fernández
    • 1
  • E. A. Castro
    • 1
  1. 1.División Química Teórica, Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations