Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 53))

  • 242 Accesses

Abstract

Let us consider a hydrogen atom of nuclear charge Z, placed in an external uniform magnetic field along the x3≡z direction. The Hamiltonian operator describing this system in the non-relativistic approximation, and with suitable units (Appendix H), is:

$${{H}_{e}}=-\frac{1}{2}({{\frac{\partial }{\partial {{\rho }^{2}}}}^{2}}+\frac{1}{\rho }\frac{\partial }{\partial \rho }+{{\frac{\partial }{\partial {{x}_{3}}^{2}}}^{2}})+{{\frac{m}{2{{\rho }^{2}}}}^{2}}+{{\frac{\lambda }{8}}^{2}}{{\rho }^{2+}}\frac{\lambda }{2}({{L}_{{{x}_{3}}}}+{{g}_{s}}+{{S}_{{{x}_{3}}}})-\frac{z}{r}$$
(33.1)

Wherer

$${{r}^{2}}=x\frac{2}{1}+x\frac{2}{2}+x\frac{2}{3}={{\rho }^{2}}+x\frac{2}{3}$$
(33.2)

Let E (Z, λ) denote the set of eigenvalues of that portion of H excluding the paramagnetic field terms (Eq. (31.1)), i.e.:

$$E(Z,\lambda )=<H(Z,\lambda )>=<{{H}_{e}}>-\frac{\lambda }{}(m+{{g}_{s}}{{m}_{s}})m=0,\pm 1,\pm 2\ldots {{m}_{s}}=\pm 1/2$$
(33.3)

The importance of this problem was already widely discussed in §.30.As pointed out, the eigenvalue problem has no analytic solution due to the coupling of the two coulombic degrees of freedom (p and x3). Our purpose is to apply the VFM to derive valid approximate expressions for E(Z,A), VX>0 /1,2/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References of Chapter X

  1. F.M. Fernandez, G.A. Arteca and E.A. Castro, Int. J. Quantum Chem. 25 (1984) 1023.

    Google Scholar 

  2. G.A. Arteca, F.M. Fernandez and E.A. Castro, Z. Physik A 315 (1984) 255.

    Article  CAS  Google Scholar 

  3. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms, Springer Verlag, Berlin, 1957.

    Google Scholar 

  4. R.H. Garstang, Rep. Prog. Phys. 40 (1977) 105.

    Article  CAS  Google Scholar 

  5. J. Simola and J. Virtamo, J. Phys. B 11 (1973) 3309.

    Article  Google Scholar 

  6. M. Robnik, J. Phys. A 14 (1981) 3195.

    Article  CAS  Google Scholar 

  7. G. Wunner and H. Ruder, J. Physique 43 (1932) C2–137.

    Google Scholar 

  8. H. Ruder, G. Wunner, H. Herold and M. Reinecke, J. Phys. B 14 (1981) L 45.

    Google Scholar 

  9. W. Rosner, G. Wunner, H. Herold and H. Ruder, J. Phys. B 17 (1984) 29

    Article  Google Scholar 

  10. L.D. Mlodinow and N. Papanicolaou, Ann. Phys. (NY) 128 (1980) 314.

    Google Scholar 

  11. C.M. Bender, L.D. Mlodinow and N. Papanicolaou, Phys. Rev. A 25 (1982) 1305.

    Google Scholar 

  12. W.R.S. Garton and F.S. Tomkins, Astrophys. J. 158 (1969) 839.

    Google Scholar 

  13. J.C. Castro, M.L. Zimmerman, R.G. Hulet, D. Kleppner and R.R. Freeman, Phys. Rev. Lett. 45 (1980) 1780.

    Google Scholar 

  14. J.C. Gay, D. Delande and F. Biraben, J. Phys. B 13 (1930) L 729.

    Google Scholar 

  15. J.C. Castro, M.L. Zimmerman, R.G. Hulet, D. Kleppner and R.R. Freeman, Phys. Rev. Lett. 45 (1980) 1780.

    Google Scholar 

  16. J.A.C. Gallas, E. Gerck and R.F. O’Connell, Phys. Rev. Lett. 50 (1983) 324.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arteca, G.A., Fernández, F.M., Castro, E.A. (1990). Application of the VFM to the Zeeman Effect in Hydrogen. In: Large Order Perturbation Theory and Summation Methods in Quantum Mechanics. Lecture Notes in Chemistry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93469-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93469-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52847-0

  • Online ISBN: 978-3-642-93469-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics