The Influence of Structure and Impurity Precipitation on the Electrical Properties of the Grain Boundaries in Silicon: Copper Precipitation in the Σ = 25 Boundary

  • M. Aucouturier
  • A. Broniatowski
  • A. Chari
  • J. L. Maurice
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)


The paper presents an overview of the structural and chemical factors involved in the electrical activity of the grain boundaries in silicon. The case of the Σ=25 boundary is discussed in detail. Impurity segregation at this boundary has been evidenced by combined Energy Dispersive X-ray analysis in Scanning Transmission Electron Microscopy and Secondary Ion Mass Spectroscopy. The densities of boundary states in heat treated specimens have been measured by Deep Level Transient Spectroscopy, showing a strong dependence of the electronic properties on the annealing time and the cooling rate of the specimens. The recombination properties and their dependence on passivation treatments in hydrogen have been investigated, using photocapacity, EBIC and LBIC measurements. The discussion of these electrical and microanalytical data suggests an implication in the electrical properties of the boundary, of precipitated metallic impurities.


Electron Spin Resonance Minority Carrier Deep Level Transient Spectroscopy Minority Carrier Lifetime Electron Beam Induce Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.K. Taylor, N.H. Odell, H.Y. Fan, Phys. Rev., 88, 867 (1952)CrossRefGoogle Scholar
  2. 2.
    W. Shockley, Phys. Rev. 91 228 (1953)CrossRefGoogle Scholar
  3. 3.
    C.R.M. Grovenor, J. Phys., C18, 4079 (1985), and ref. therein.Google Scholar
  4. 4.
    Rev. Phys. Appl., 22. (7) (1987) Special issue on “Polycrystalline silicon”.Google Scholar
  5. 5.
    J. Hornstra, Physica, 25, 409 (1959), andCrossRefGoogle Scholar
  6. 5a.
    J. Hornstra, Physica 26, 198 (1960).CrossRefGoogle Scholar
  7. 6.
    A. Bourret, J.J. Bacmann, Surf. Sci., 162, 495 (1985).CrossRefGoogle Scholar
  8. 7.
    A.M. Papon, M. Petit, Scripta Met., 19, 391 (1985).CrossRefGoogle Scholar
  9. 8.
    A. Bourret, J.L. Rouvière, This Conf.Google Scholar
  10. 9.
    R.E. Thomson, D.J. Chadi, Phys. Rev. B, 29, 889 (1984).CrossRefGoogle Scholar
  11. 10.
    D.P. di Vincenzo, O.L. Alerhand, M. Schlüter, J.W. Wilkins, Phys. Rev. Lett., 56, 1925 (1986).CrossRefGoogle Scholar
  12. 11.
    A. Mauger, J.C. Bourgoin, G. Allan, M. Lannoo, A. Bourret, L. Billard, Phys. Rev. B, 35, 1217 (1987).Google Scholar
  13. 12.
    A.T. Paxton, Ph. D. thesis, Oxford (1987).Google Scholar
  14. 13.
    A. Bary, B. Mercey, G. Poullain, J.L. Chermant, G. Nouet, in Ref. 6, p. 597.Google Scholar
  15. 14.
    A. Broniatowski in ref. 4 p. 565Google Scholar
  16. 15.
    G. Poullain, Doct. thesis, Caen, France (1985),Google Scholar
  17. 15a.
    G. Poullain, B. Mercey, G. Nouet, J. Appl. Phys., 61, 1547 (1987).CrossRefGoogle Scholar
  18. 16.
    P.M. Lenahan, W.K. Schubert, Phys. Rev. B, 30, 1544 (1984).CrossRefGoogle Scholar
  19. 17.
    N. M. Johnson, D.K. Biegelsen, M.D. Moyer, Appl. Phys. Lett., 40, 882 (1982).CrossRefGoogle Scholar
  20. 18.
    D. Ballutaud, F. Babonneau, M. Aucouturier, Appl. Phys. Lett., 49, 1620 (1986).CrossRefGoogle Scholar
  21. 19.
    L.L. Kazmerski, this conference.Google Scholar
  22. 20.
    M. Zehaf, G. Mathian M. Pasquinelli, S. Martinuzzi, Poly-microcrystalline and amorphous semiconductors”, Les Editions de Physique, Paris (1985), p. 137.Google Scholar
  23. 21.
    A. Bary, G. Nouet, J. Appl. Phys., 63, 435 (1988).CrossRefGoogle Scholar
  24. 22.
    J.L. Maurice, C. Colliex, This Conf.Google Scholar
  25. 23.
    J.L. Maurice, J.Y. Laval, J. Phys. C43, C1–207 (1982).Google Scholar
  26. 24.
    The bicrystals have been grown by cristallec (CEN Grenoble)Google Scholar
  27. 25.
    F. Battistella, A. Rocher, A. George, M.R.S. Conf. Proc, 59, 347 (1986).CrossRefGoogle Scholar
  28. 26.
    A. Ihlal, G. Nouet, In “Beam assessment of defects in semicond.”, Meudon, France (July 1988). To be edited by Les Editions de Physique.Google Scholar
  29. 27.
    A. Ihlal, Doct. Thesis, Caen, France (1988).Google Scholar
  30. 28.
    M. Aucouturier, D. Ballutaud, E. Darque-Ceretti, P. Maugis, 5th Int. Conf. on “Quantitative Surface Analysis”, London (1988).Google Scholar
  31. 29.
    A. Broniatowski, to be published in J. Appl. Phys. (Nov. 1988).Google Scholar
  32. 30.
    G. Revel, Laboratoire Pierre Süe, Saclay (France), unpublished (1988).Google Scholar
  33. 31.
    D.R. Sparks, R.G. Chapman, J. Electrochem. Soc., 133, 1201 (1986), and references therein.CrossRefGoogle Scholar
  34. 32.
    D.V. Lang, J. Appl. Phys. 45, 3033 (1974).CrossRefGoogle Scholar
  35. 33.
    A. Broniatowski, Phys. Rev. B, 36, 5895 (1987).CrossRefGoogle Scholar
  36. 34.
    J.F. Hamet, G. Nouet, This Conf.Google Scholar
  37. 35.
    C.H. Seager, J. Appl. Phys. 52, 3960 (1981)CrossRefGoogle Scholar
  38. 36.
    P.T. Landsberg, M.J. Abrahams, J. Appl. Phys. 55, 4284 (1984).CrossRefGoogle Scholar
  39. 37.
    C. Donolato, J. Appl. Phys. 54, 1314 (1983).CrossRefGoogle Scholar
  40. 38.
    J. Marek, Proc. 16th Photovoltaic Spec. Conf., II, 627 (1982).Google Scholar
  41. 39.
    C. Donolato, in “Polycrystalline semiconductors”, ed. by G. Harbeke, Springer-Verlag, Berlin (1985) p. 138.CrossRefGoogle Scholar
  42. 40.
    J.L. Maurice, see ref. 26.Google Scholar
  43. 41.
    A. Chari, P. de Mierry, A. Menickh, M. Aucouturier, in ref. 4, p. 655Google Scholar
  44. 42.
    J.C. Mikkelsen, Appl. Phys. Lett. 40, 336 (1982).CrossRefGoogle Scholar
  45. 43.
    P.D. Frampton, E.A. Irene, F.M. d’Heurle, J. Appl. Phys., 62, 2972 (1987).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • M. Aucouturier
    • 1
  • A. Broniatowski
    • 2
  • A. Chari
    • 1
  • J. L. Maurice
    • 3
  1. 1.Laboratoire de Physique des SolidesCNRSMeudon CedexFrance
  2. 2.G.P.S.-E.N.SUniversité Paris VIIParis Cedex 05France
  3. 3.Laboratoire de Physique des MatériauxCNRSMeudon CedexFrance

Personalised recommendations