Advertisement

Electronic Properties of Photoetched CdSe Films

  • R. Jäger-Waldau
  • R. Tenne
  • N. Stücheli
  • H. Flaisher
  • M. Braun
  • M. Lux-Steiner
  • E. Bucher
  • W. Kerfin
  • R. Braun
  • W. Koschel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)

Abstract

CdSe films were prepared through physical vapour transport on titanium substrates. Their electronic properties were studied at each of four preparation steps, i. e. evaporation, annealing, chemical etching and finally photoetching (PE). To have a direct probe on each process photoluminescence (PL) was employed combined with electronic measurements and secondary ion mass spectrometry (SIMS). At 3 K two distinct donor-acceptor (DA) transitions at 1. 75 eV and 1. 70 eV were found in the PL spectra. These DA transitions which are produced during the evaporation might be associated with group VII and with alkali metal impurities. After each preparation step the DA transitions change their intensities. It is shown that PE of the films leads to a removal of the deep centers, while the 1. 75 eV transition is blue shifted. In contrast with single crystal CdSe the intensity of the PL increases after PE. The results of the PL are consistent with the electronic measurements. They are explained in terms of a previously published model. This investigation shows that PE improves the electronic properties of polycrystalline CdSe films.

Keywords

Illumination Intensity Shallow Donor Titanium Substrate Na2S03 Solution Thin Film CdSe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Garuthara, M. Tomkiewicz, and R. Tenne, Phys. Rev. B 31, 7844 (1985)CrossRefGoogle Scholar
  2. 2.
    R. Tenne, H. Mariette, C. Levy-Clement, and R. Jäger-Waldau, Phys. Rev. B 36, 1204 (1987)CrossRefGoogle Scholar
  3. 3.
    B. M. Arora and W. D. Compton, J. Appl. Phys. 43, 4499 (1972)CrossRefGoogle Scholar
  4. 4.
    M. Yamaguchi and K. Hgai, Jap. J. Appl. Phys. 13, 1897 (1084)CrossRefGoogle Scholar
  5. 5.
    I. B. Ermolovich and E. L. Shtrum, Thin Solid Films 22, 157 (1974)CrossRefGoogle Scholar
  6. 6.
    C. H. Henry, K. Nassau, and J. W. Shiever, Phys. Rev. B 8, 2453 (1971)Google Scholar
  7. 7a.
    R. N. Bhargava, R. J. Seymour, B. J. Fitzpatrick, and S. P. Herko, Phys. Rev. B 20, 2407 (1979)Google Scholar
  8. 7b.
    G. F. Neumark, S. P. Herko, and B. J. Fitzpatrick, 13th Intl. Conf. Defects in Semicon., Coronado, CA, 1984, edited by L. C. Kimerling and J. M. Parsey, Jr. (Metallurgical Society, AIME, Warrendale, Penn., 1985) p. 1205Google Scholar
  9. 8.
    E. W. Williams and H. B. Bebb, in “Semiconductors and Semimetals”. eds. R. K. Willardson and A. C. Beer, Academic Press NY (1972), Vol. 8, p. 387Google Scholar
  10. 9.
    R. T. Cox and J. J. Davies, Phys. Rev. B 34, 8591 (1986)CrossRefGoogle Scholar
  11. 10.
    R. Tenne, H. Flaisher, and R. Triboulet, Phys. Rev. B 29, 5799 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • R. Jäger-Waldau
    • 1
  • R. Tenne
    • 2
  • N. Stücheli
    • 1
  • H. Flaisher
    • 2
  • M. Braun
    • 1
    • 3
  • M. Lux-Steiner
    • 1
  • E. Bucher
    • 1
  • W. Kerfin
    • 3
  • R. Braun
    • 3
  • W. Koschel
    • 3
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzFed. Rep. of Germany
  2. 2.Department of Materials ResearchWeizmann Institute of ScienceRehovotIsrael
  3. 3.Dornier System GmbHFriedrichshafenFed. Rep. of Germany

Personalised recommendations