Advertisement

Metal and Polycrystalline Silicon Reactions

  • K. N. Tu
  • T. C. Chou
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)

Abstract

The effects of dopant and microstructure on the reaction between metal and silicon are discussed. Dopants affect not only the kinetics of silicide formation, but also the microstructure of the polysilicon films. The growth of anomalously large grains, along with dopant depletion, in P-doped polycrystalline Si films annealed at 700° C in the presence of a neighboring TiSi2 film has been observed. The unusual grain growth is postulated to be driven by a large electrostatic force on a moving grain boundary due to an inhomogeneous dopant depletion.

Keywords

Boundary Migration Silicide Formation Nickel Silicide Material Research Society Symposium Proceeding Field Transmission Electron Microscopic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Mayer and K. N. Tu, J. Vac. Sci. Tech., 11, 86 (1974).CrossRefGoogle Scholar
  2. 2.
    K. N. Tu and J. W. Mayer, Chapter 10 in “Thin Films — Interdiffusion and Reactions”, edited by J. M. Poate, K. N. Tu and J. W. Mayer, John Wiley, New York (1978).Google Scholar
  3. 3.
    R. D. Thompson and K. N. Tu, Thin Solid Films, 53, 4372 (1982)Google Scholar
  4. 4.
    I. Ohdomari, K. N. Tu, K. Suguro, M. Akiyama, I. Kimura and K. Yoneda, Appl. Phys. Lett., 38,1015(1981).CrossRefGoogle Scholar
  5. 5.
    M. Wittmer and K. N. Tu, Phys. Rev. B29, 2010 (1984).Google Scholar
  6. 6.
    O. Bisi and K. N. Tu, Phys. Rev. Lett., 52, 1633 (1984).CrossRefGoogle Scholar
  7. 7.
    I. Ohdomari, private communication.Google Scholar
  8. 8.
    P. A. Psaras, R. D. Thompson and K. N. Tu, Appl. Phys. Lett., 47, 250 (1985).CrossRefGoogle Scholar
  9. 9.
    H. Takai and K. N. Tu, Phys. Rev. B., in press.Google Scholar
  10. 10.
    J. O. Olowolafe, M-A. Nicolet and J. W. Mayer, J. Appl. Phys. 47, 5182 (1976).CrossRefGoogle Scholar
  11. 11.
    P. A. Psaras, R. D. Thompson, S. R. Herd and K. N. Tu, J. Appl. Phys., 55, 3536 (1984).CrossRefGoogle Scholar
  12. 12.
    S. R. Herd, K. N. Tu and K. Y. Ahn, Appl. Phys. Lett., 42, 597 (1983).CrossRefGoogle Scholar
  13. 13.
    K. Holloway and R. Sinclair, J. Appl. Phys.,61, 1359 (1987).CrossRefGoogle Scholar
  14. 14.
    R. B. Schwartz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983).CrossRefGoogle Scholar
  15. 15.
    B. M. Clemens, W. L. Johnson and R. B. Schwartz, J. Non-Cryst. Solids, 61 and 62, 817 (1984).CrossRefGoogle Scholar
  16. 16.
    J. C. Barbour, Phys. Rev. Lett., 55, 2872 (1985).CrossRefGoogle Scholar
  17. 17.
    H. Hahn, R. S. Averback and S. J. Rothman, Phys. Rev. B33, 8825 (1986).Google Scholar
  18. 18.
    S. R. Herd, private communication.Google Scholar
  19. 19.
    C. Y. Wong, F. S. Lai, P. A. McFarland, F. M. d’Heurle, and C. Y. Ting, J. Appl. Phys. 59, 2773 (1986).CrossRefGoogle Scholar
  20. 20.
    T. C. Chou, C. Y. Wong and K. N. Tu, Appl. Phys. Lett., 49, 1381 (1986).CrossRefGoogle Scholar
  21. 21.
    T. C. Chou, C. Y. Wong and K. N. Tu, J. Appl. Phys., 62, 2722 (1987).CrossRefGoogle Scholar
  22. 22.
    K. N. Tu, J. Tersoff, T. C. Chou and C. Y. Wong, Solid State Communications, 66, 93 (1988).CrossRefGoogle Scholar
  23. 23.
    W. Frank, U. Gosele, H. Mehrer and A. Seeger, in “Diffusion in Crystalline Solids,” edited by G. E. Murch A. S. Nowick, Academic, New York, p. 90 (1984).Google Scholar
  24. 24.
    F. J. A. den Broeder, Acta. Met., 20, 319 (1972).CrossRefGoogle Scholar
  25. 25.
    K. N. Tu, J. Appl. Phys. 48, 3400 (1977).CrossRefGoogle Scholar
  26. 26.
    M. Hillert and G. R. Purdy, Acta. Met., 26, 333 (1978).CrossRefGoogle Scholar
  27. 27.
    J. W. Cahn, J. D. Pan and R. W. Balluffi, Scripta Met., 13, 503 (1979).CrossRefGoogle Scholar
  28. 28.
    R. W. Balluffi and J. W. Cahn, Acta. Met., 29, 493 (1981).CrossRefGoogle Scholar
  29. 29.
    D. A. Smith and A. H. King, Phil, Mag., A44, 333 (1981).Google Scholar
  30. 30.
    J. C. M. Li and B. B. Rath, Scripta Met., 19, 689 (1985).CrossRefGoogle Scholar
  31. 31.
    M. Hillert, Scripta Met, 17, 237 (1983).CrossRefGoogle Scholar
  32. 32.
    F. H. M. Spit and H. Bakker, Phys. Stat. Sol., (a)97, 135 (1986).CrossRefGoogle Scholar
  33. 33.
    C. H. Seager, G. E. Pike and D. S. Ginley, Phys. Rev. Lett., 43, 532 (1979).CrossRefGoogle Scholar
  34. 34.
    C. H. Seager, Ann. Rev. Mater. Sci. edited, by R. A. Huggins, Vol. 15, 271 (1985).Google Scholar
  35. 35.
    J. Werner, W. Jantsch, K. H. Froehner and H. J. Queisser, Materials Research Society Symposia Proceedings, Vol. 5, edited by H. J. Leamy, G. E. Pike, C. H. Seager, p. 99 (1982).Google Scholar
  36. 36.
    H. J. Queisser and J. H. Werner, Materials Research Society Symposia Proceedings, Vol. 106, edited by C. Y. Wong, C. V. Thompson and K. N. Tu, p. 53, (1988).Google Scholar
  37. 37.
    G. Petermann and P. Haasen, Materials Research Society Symposia Proceedings, Vol. 106, edited by C. Y. Wong, C. V. Thompson and K. N. Tu, p. 65 (1988).Google Scholar
  38. 38.
    J. J. J. Yang, P. D. Dapkus, R. D. Dupuis and R. D. Yingling, J. Appl. Phys., 51, 3794 (1980).CrossRefGoogle Scholar
  39. 39.
    R. A. Swalin, “Thermodynamics of Solids, ”John Wiley, New York, Chapter 10 (1972).Google Scholar
  40. 40.
    M-A. Nicolet and S. S. Lau, in “VLSI Electronics Microstructure Science” Vol. 6, Ed. by N. G. Einspruch and G. B. Larrabee, Academic Press, New York (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • K. N. Tu
    • 1
  • T. C. Chou
    • 1
  1. 1.IBM Research DivisionT.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations