Mechanisms of Epitaxial Growth of Polar Semiconductors on (001) Silicon

  • P. Pirouz
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)


During the last few years, the use of a two-step process in the growth of compound semiconductors on (001) silicon substrates, by chemical vapor deposition or molecular beam epitaxy, has been found to produce films which are uniformly single crystalline with good epitaxial relationship to the substrate. In the first step, a so-called buffer layer is grown at a relatively low temperature to form a continuous film on the substrate and, subsequently, the substrate temperature is increased and growth continued at a higher deposition rate. This is in contrast to the one-step process where the substrate is heated to the growth temperature and deposition carried out in one go. Using the latter technique of growth, the morphology of the resulting film is often poor and it is sometimes a polycrystalline aggregate. The epilayers grown on an (001) Si substrate contain a variety of lattice defects. The formation of these defects is often attributed to stresses resulting from mismatch in lattice parameters (“coherency strains”), or mismatch in coefficients of thermal expansion giving rise to thermal stresses in the cooling stage following the growth. However, the literature shows a number of unexpected similarities in the defect configurations and densities of most epitaxial systems with varying degrees of lattice or thermal mismatch. In this paper, the one-step and two-step growth techniques are discussed in terms of homogeneous and heterogeneous surface nucleation. The reason for the different microstructures obtained by the two techniques are attributed to these two types of nucleation. Subsequently, the formation of various line defects is briefly reviewed. The characteristics of planar faults are then summarized, and a recently proposed mechanism for their formation which is based on deposition errors in the early stages of heteroepitaxial growth is described.


Burger Vector Heterogeneous Nucleation Homogeneous Nucleation Critical Thickness Misfit Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Akiyama, Y. Kawarada, and K. Kaminishi, J. Crystal Growth 68, 21 (1984).CrossRefGoogle Scholar
  2. 2.
    J. M. Olson, M. M. Al-Jassim, A. Kibbler, and K. M. Jones, J. Crystal Growth 77, 515 (1986).CrossRefGoogle Scholar
  3. 3.
    S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
  4. 4.
    P. Pirouz, F. Ernst, and T. T. Cheng, Mat. Res. Soc. Proc. Symp. 116, (1988). In press.Google Scholar
  5. 5.
    F. Ernst and P. Pirouz, J. Appl. Phys., (1988). In press.Google Scholar
  6. 6.
    F. Ernst and P. Pirouz, Submitted to J. Mater. Res. (1988).Google Scholar
  7. 7.
    J. A. Powell, L. G. Matus, and M. A. Kuzmarski, J. Electrochem. Soc. 134, 1558 (1987).CrossRefGoogle Scholar
  8. 8.
    I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987).CrossRefGoogle Scholar
  9. 9.
    P. Pirouz, C. M. Chorey, T. T. Cheng, and J. A. Powell, Mat. Res. Soc. symp. Proc. 91, 399 (1987).CrossRefGoogle Scholar
  10. 10.
    P. Pirouz, C. M. Chorey, T. T. Cheng, and J. A. Powell, in ‘Microscopy of Semiconducting Materials’, Inst. Phys. Conf. Ser. No. 87, 175, (1987).Google Scholar
  11. 11.
    F. C. Frank and J. H. van der Merwe, Proc. Royal Soc. Lond. A198, 205 (1949).CrossRefGoogle Scholar
  12. 12.
    J. H. van der Merwe, J. Appl. Phys. 34, 123 (1963).CrossRefGoogle Scholar
  13. 13.
    J. W. Matthews, Phil. Mag. 6, 1347 (1961).CrossRefGoogle Scholar
  14. 14.
    P. Delavignette, J. Tournier, and S. Amelinckx, Phil. Mag. 6, 1419 (1961).CrossRefGoogle Scholar
  15. 15.
    J. W. Matthews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
  16. 16.
    J. W. Matthews and E. Blakeslee, J. Crystal Growth 27, 118 (1974).Google Scholar
  17. 17.
    R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985);CrossRefGoogle Scholar
  18. 17a.
    R. People and J. C. Bean, Appl. Phys. Lett. 49, 229 (1986).CrossRefGoogle Scholar
  19. 18.
    B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).CrossRefGoogle Scholar
  20. 19.
    N. Otsuka, C. Choi, L. Kolodziejski, R. Gunshor, R. Fischer, C. Peng, H. Morkoc, Y. Nakamura, and S. Nagakura, J. Vac. Sci. Technol. B 4, 896 (1986).CrossRefGoogle Scholar
  21. 20.
    H. Strunk, W. Hagen and E. Bauser, Appl. Phys. 18, 67 (1979).CrossRefGoogle Scholar
  22. 21.
    J. W. Matthews, Phil. Mag. 13, 1207 (1966).CrossRefGoogle Scholar
  23. 22.
    W. A. Jesser and J. W. Matthews, Phil. Mag. 17, 461 (1968).CrossRefGoogle Scholar
  24. 23.
    R. Hull, J. C. Bean, Re. E. Leibenguth, and D. J. Werder, Mat. Res. Soc. Symp. Proc. 116, (1988). In press.Google Scholar
  25. 24.
    W. Hagen and H. Strunk, Appl. Phys. 17, 85 (1978).CrossRefGoogle Scholar
  26. 25.
    J. H. Neave, P. K. Larsen, B. A. Joyce, J. P. Gowers, and J. F. van der Veen, J. Vac. Sci. Technol. B 1, 668 (1983).CrossRefGoogle Scholar
  27. 26.
    P. Pirouz, C. M. Chorey, and J. A. Powell, Appl. Phys. Lett. 50, 221 (1987).CrossRefGoogle Scholar
  28. 27.
    W. Lambrecht, B. Segall, and P. Pirouz, Mat. Res. Soc. Symp. Proc., (1988), To be published.Google Scholar
  29. 28.
    R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. McGlinn, M. V. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, J. Appl. Phys. 58, 374 (1985).CrossRefGoogle Scholar
  30. 29.
    J. A. Powell, L. G. Matus, M. A. Kuzmarski, C. M. Chorey, T. T. Cheng, and P. Pirouz, Appl. Phys. Lett. 51, 823 (1987).CrossRefGoogle Scholar
  31. 30.
    D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).CrossRefGoogle Scholar
  32. 31.
    M. M. Al-Jassim, J. M. Olson, and K. M. Jones, Mat. Res. Soc. Symp. Proc. 62, 49 (1986).CrossRefGoogle Scholar
  33. 32.
    R. Hull and A. Fischer-Colbie, Appl. Phys. Lett. 50, 851 (1987).CrossRefGoogle Scholar
  34. 33.
    D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, J. Appl. Phys. 61, 1856 (1987).CrossRefGoogle Scholar
  35. 34.
    G. A. Bootsma, W. F. Knippenberg, and G. Verspui, J. Crystal Growth 11, 297 (1971).CrossRefGoogle Scholar
  36. 35.
    W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. R. Soc. Lond. A243, 299 (1951).MathSciNetCrossRefGoogle Scholar
  37. 36.
    G. R. Booker and R. Stickler, J. Appl. Phys. 33, 3281 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • P. Pirouz
    • 1
  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations