Electron Beam Induced Current Contrast and Transmission Electron Microscopy Analysis of Special Grain Boundaries in Silicon

  • J.-L. Maurice
  • C. Colliex
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)


Correlations between electrical activity and microstructure in special silicon grain boundaries are presented. EBIC and TEM were performed on the same samples. Three examples of special silicon grain boundaries (Σ = 3, 5, 25) are presented where TEM has been carried out on zones previously characterized by EBIC. In the Σ = 3 case, electrical activity arises when both possible twin planes ({111} and {112}) are present, it is associated with some of the dislocations separating these planes. In the Σ = 5 case, electrical activity is related to the secondary dislocation core structure. In the Σ = 25 case, it has no obvious relation with structure. EBIC-contrast is enhanced by annealing in all cases. Microanalysis of the Z = 25 shows that copper and nickel-based precipitates are implicated in that increase.


Electrical Activity Electron Energy Loss Spectrometry Polycrystalline Silicon Twin Plane Electron Beam Induce Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rev. Phys. Appl. 22 (7), (1987); (special issue on polycrystalline silicon), see in particular review by J.-L. Maurice, p.613Google Scholar
  2. 2.
    M. Aucouturier, A. Broniatowski, A. Chari and J.-L. Maurice: same conf.Google Scholar
  3. 3.
    D. Hania: Doctoral thesis, Paris (1984)Google Scholar
  4. 4.
    A. Ihlal: Doctoral thesis, Caen (1988)Google Scholar
  5. 5.
    G. Revel, D. Hania and J.L. Pastol: in “Poly-micro-crystalline and amorphous semiconductors”, edited by P. Pinard and S. Kalbitzer, Les Editions de Physique, Paris, 1984, p. 147Google Scholar
  6. 6.
    J.-L. Maurice, J.L. Pastol, J.E. Bourée, J.Y. Laval, G. Revel and M. Rodot: see ref.5, p. 323Google Scholar
  7. 7.
    J.-J. Aubert and J.-J. Bacmann: Rev. Phys. Appl., 22 (7), 515 (1987)CrossRefGoogle Scholar
  8. 8.
    C. Donolato: J. Appl. Phys. 54, 1314 (1983)CrossRefGoogle Scholar
  9. 9.
    A. Mauger, J.C. Bourgoin, G. Allan, M. Lannoo, A. Bourret and L. Billard: Phys. Rev. B35, 1267 (1987)Google Scholar
  10. 10.
    A.T. Paxton: Ph. D Thesis, Oxford (1987)Google Scholar
  11. 11.
    A. Bourret and J.J. Bacmann: “JIMIS-4” Conference, Minakami Spa (Japan)Google Scholar
  12. 12.
    A. Bourret, L. Billard and M. Petit: Inst. Phys. Conf. Ser. 76 (1), 23 (1985)Google Scholar
  13. 13.
    F.W. Schapink: poster communication in “Joints intergranulaires et interphases”, Conference in Caen (1986)Google Scholar
  14. 14.
    R. Sharko, A. Gervais and C. Texier-Hervo: J. Phys. 43, C1–129 (1982)CrossRefGoogle Scholar
  15. 15.
    A. Bourret and J.-L. Rouvière, this conf.Google Scholar
  16. 16.
    C. Colliex, J.-L. Maurice and D. Ugarte: to be published in Ultramicroscopy (1989)Google Scholar
  17. 17.
    C. d’Anterroches and A. Bourret: Phil. Mag. A, 49 (6), 783 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J.-L. Maurice
    • 1
  • C. Colliex
    • 2
  1. 1.Laboratoire de Physique des MatériauxCNRSMeudonFrance
  2. 2.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations