Skip to main content

Growth by Gradients: Fractal Growth and Pattern Formation in a Laplacian Field

  • Conference paper
Computer Simulation Studies in Condensed Matter Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 33))

Abstract

The formation of a wide variety of patterns is controlled by the strength of the gradient of a field at the interface between the structure and the outside. For example, the rate of growth in aggregation processes [1, 2] depends on the concentration of diffusing particles, in solidification [3] it depends on the temperature gradient, in dielectric breakdown [4] it is proportional to some power of the electric field, in electrodeposition [5, 6] it depends on the gradient of the electrical voltage, and in viscous fingering [7, 8] it is the pressure gradient. It has long been speculated [9] that concentration gradients of nutrients, light and energy resources are the factors controlling the development of a variety of biological patterns as well, even though much less is known about pattern formation in biological systems [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Family and D. P. Landau, (eds), Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  2. T. A. Witten, Jr., and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  3. J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).

    Article  ADS  Google Scholar 

  4. L. Niemeyer, L. Pietronero, and H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  5. R. M. Brady and R. C. Ball, Nature 309, 225 (1982).

    Article  ADS  Google Scholar 

  6. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53, 286 (1984).

    Article  ADS  Google Scholar 

  7. L. Patterson, Phys. Rev. Lett. 52, 1621 (1984).

    Article  ADS  Google Scholar 

  8. J. Nittmann, G. Daccord, and H. E. Stanley, Nature 314, 141 (1985).

    Article  ADS  Google Scholar 

  9. H. Meinhardt, Models of Biological Pattern Formation, (Academic Press, New York, 1982), and references therein.

    Google Scholar 

  10. T. Vicsek, Europhysics News, (to be published, 1988).

    Google Scholar 

  11. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  12. P. Meakin, in Critical Phenomena and Phase Transitions, C. Domb and J. L. Lebowitz (eds.), (Academic Press, New York, 1988), Vol 8, p.335.

    Google Scholar 

  13. J. Feder, Fractals, (Plenum Press, New York, 1988).

    MATH  Google Scholar 

  14. F. Family, T. Vicsek, and B. Taggett, J. Phys. A 19, L727 (1986).

    Article  ADS  Google Scholar 

  15. F. Family, Y. C. Zhang and T. Vicsek, J. Phys. A 19, L733 (1986).

    Article  ADS  Google Scholar 

  16. F. Family and H.G.E. Hentschel, Faraday Discuss. Chem. Soc. 83, 139 (1987).

    Article  Google Scholar 

  17. M. Matsushita, F. Family, and K. Honda, Phys. Rev. A 36, 3518 (1987).

    Article  ADS  Google Scholar 

  18. F. Family, D. E. Platt and T. Vicsek, J. Phys. A 20, L1177 (1987).

    Article  ADS  Google Scholar 

  19. D. E. Platt and F. Family, to be published (1988).

    Google Scholar 

  20. T. Vicsek, Phys. Rev. Lett. 53, 2281 (1984).

    Article  ADS  Google Scholar 

  21. L. P. Kadanoff, J. Stat. Phys. 39, 267 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  22. P. Meakin, F. Family, and T. Vicsek, J. Colloid and Int. Sci. 117, 394 (1987).

    Article  Google Scholar 

  23. T. Vicsek and J. Kertész, J. Phys. A19, L257 (1986).

    Google Scholar 

  24. J. Nittmann and H. E. Stanley, Nature 321, 663 (1986).

    Article  ADS  Google Scholar 

  25. P. Meakin, Faraday Discuss. Chem. Soc. 83, 113 (1987).

    Article  Google Scholar 

  26. S. Satpathy, Phys. Rev. B 33, 5093 (1986).

    Article  ADS  Google Scholar 

  27. R. C. Ball, R. M. Brady, G. Rossi and B. R. Thompson, Phys. Rev. Lett. 55, 1406 (1985).

    Article  ADS  Google Scholar 

  28. L. Turkevich and H. Scher, Phys. Rev. Lett. 55, 1026 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Wolfram, Theory and Applications of Cellular Automata, (World Scientific, Singapore, 1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Family, F. (1988). Growth by Gradients: Fractal Growth and Pattern Formation in a Laplacian Field. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed Matter Physics. Springer Proceedings in Physics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93400-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93400-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93402-5

  • Online ISBN: 978-3-642-93400-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics