Path-Integral and Real-Time Dynamics Simulations of Quantum Systems

  • U. Landman
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 33)


While classical molecular dynamics (MD) and Monte Carlo (MC) simulations have become standard theoretical tools in studies of condensed matter and material science [1], treatments of quantum systems via computer simulations are more scarce. Early proposals for studies of quantum systems have been hampered by prohibitive computational demands. However, progress in the area of computers coupled with theoretical advances brought about renewed endeavors in quantum simulations [1–8] resulting in the formulation, implementation and application of several methods to studies of quantum field theory, many-fermion systems, quantum fluids and crystals, models of nuclear matter, electronic structure of molecules, electron localization in fluids and small clusters and quantum adsorption systems. Among the methods which were developed we note [1–8] the quantum Monte Carlo (QMC) methods, Green’s function Monte Carlo (GFMC), Quantum Path-Integral Molecular Dynamics (QUPID), Path-Integral Monte Carlo (PIMC), and time-dependent self-consistent-field (TDSCF) methods in conjunction with the fast Fourier transform (FFT) method for the solution of the time-dependent Schrodinger equation and with classical molecular dynamics. In this chapter we focus on the QUPID and MD-TDSCF techniques. Following brief reviews of the methods in the next section, we turn to several illustrations of their use in recent studies. The examples which we choose are drawn from investigations performed in our laboratory. For entrance into the growing body of literature on these subjects the reader is referred to recent reviews [7,8] and to the cited references.


Monte Carlo Water Cluster Electron Localization Electron Attachment Fast Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For reviews see the article by U. Landman “Molecular Dynamics Simulations in Material Science and Condensed Matter Physics”, the article by F. F. Abraham, and other contributions in this volume.Google Scholar
  2. [2]
    D. M. Ceperley and M. H. Kalos in “Monte Carlo Methods in Statistical Physics”, Ed. K. Binder (Springer-Verlag, Berlin, 1979), p. 145.Google Scholar
  3. [3]
    K. E. Schmidt and M. H. Kalos in “Applications of the Monte Carlo Method in Statistical Physics”, Ed. K. Binder (Springer-Verlag, Berlin, 1984), p. 4.Google Scholar
  4. [4]
    Articles in “Monte Carlo Methods in Quantum Problems”, Ed. M. H. Kalos (Reidei, Dordrecht, 1984).Google Scholar
  5. [5]
    B. J. Alder, D. M. Ceperley and E. L. Pollock, Ace. Chem. Res. 18, 268 (1985).CrossRefGoogle Scholar
  6. [6]
    D. M. Ceperley and B. J. Alder, Science 231, 555 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    B. J. Berne and D. Thirumalai, Ann. Rev. Phys. Chem. 37, 401 (1986).ADSCrossRefGoogle Scholar
  8. [8]
    R. Kosloff, “Time Dependent Quantum Mechanical Methods for Molecular Dynamics”, to appear in J. Phys. Chem. (1988).Google Scholar
  9. [9]
    D. Chandler and P. G. Wolynes, J. Chem. Phys. 79, 4078 (1981).ADSCrossRefGoogle Scholar
  10. [10]
    D. Chandler, J. Phys. Chem. 88, 3400 (1984).CrossRefGoogle Scholar
  11. [11]
    M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).ADSCrossRefGoogle Scholar
  12. [12]
    D. De Raedt, H. Sprik and H. L. Klein, J. Chem. Phys. 80, 5719 (1984).ADSCrossRefGoogle Scholar
  13. [13]
    M. F. Herman, E. J. Bruskin and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).ADSCrossRefGoogle Scholar
  14. [14]
    U. Landman, D. Scharf, and J. Jortner, Phys. Rev. Lett. 54, 1860 (1985).ADSCrossRefGoogle Scholar
  15. [15]
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  16. [16]
    L. S. Schulman, Techniques and Applications of Path Integrals (Wiley, New York, 1981).Google Scholar
  17. [17]
    M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 3765 (1984)ADSCrossRefGoogle Scholar
  18. M. Imada, J. Phys. Soc. Jpn. ibid. 53, 963 (1984)Google Scholar
  19. M. Imada, J. Phys. Soc. Jpn. ibid. 53, 3770 (1984).Google Scholar
  20. [18]
    F. F. Abraham and J. Q. Broughton, Phys. Rev. Lett. 59, 64 (1987).ADSCrossRefGoogle Scholar
  21. [19]
    J. Chang and W. H. Miller, J. Chem. Phys. 87, 1648 (1987).ADSCrossRefGoogle Scholar
  22. [20]
    J. D. Doll, R. D. Colson and D. L. Freeman, J. Chem. Phys. 87, 1641 (1987).ADSCrossRefGoogle Scholar
  23. [21]
    A. L. Nichols III and D. Chandler, Excess Electrons in Simple Fluids IV. Real Time Behavior, Preprint.Google Scholar
  24. [22]
    M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys. 47, 412 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  25. M. D. Feit and J. A. Fleck, Jr., J. Chem. Phys. 78, 301 (1983)ADSCrossRefGoogle Scholar
  26. J. A. Fleck, Jr., J. Chem. Phys. ibid. 80, 2578 (1984).Google Scholar
  27. [23]
    D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35 (1983).ADSMATHCrossRefGoogle Scholar
  28. [24]
    P. A. M. Dirac, Proc. Comb. Phil. Soc. 26, 376 (1930).ADSMATHCrossRefGoogle Scholar
  29. [25]
    A. D. Mclachlan, Mol. Phys. 7, 139 (1964).MathSciNetADSGoogle Scholar
  30. [26]
    D. Kumamoto and R. Silbey, J. Chem. Phys. 75, 5164 (1981).ADSCrossRefGoogle Scholar
  31. [27]
    R. N. Barnett, U. Landman and A. Nitzan, Phys. Rev. A (1988) and “Dynamics and Spectra of a Solvated Electron in Water Clusters”, J. Chem. Phys. (August 15, 1988).Google Scholar
  32. [28]
    N. Makri and W. H. Miller, J. Chem. Phys. 87, 5781 (1987).ADSCrossRefGoogle Scholar
  33. [29]
    J. Kucar, H. D. Meyer and L. S. Cederbaum, Chem. Phys. Lett. 140, 525 (1987).ADSCrossRefGoogle Scholar
  34. [30]
    R. H. Bisseling, R. Kosloff, R. B. Gerber, M. A. Ratner, L. Gibson and C. Cerjan, J. Chem. Phys. 87, 2760 (1987).ADSCrossRefGoogle Scholar
  35. [31]
    Z. Kotler, R. Kosloff and A. Nitzan (to be published).Google Scholar
  36. [32]
    J. R. Fox and H. C. Anderson, J. Phys. Chem. 88, 4019 (1984). In our MD-TDSCF simulations we use the stochastic thermalization method for constant temperature simulations described by these authors, and the classical equations of motion are integrated using the velocity form of the Verlet algorithm.CrossRefGoogle Scholar
  37. [33]
    J. Jortner, Ber. Bunsenges, Physik. Chem. 88, 188 (1984).Google Scholar
  38. [34]
    J. Jortner, D. Scharf and U. Landman in “Proceeding of the Enrico Fermi Summer School on Excited State Spectroscopy in Solids”, XCVI Corso, p. 438 (1987).Google Scholar
  39. [35]
    U. Landman, R. N. Barnett, C. L. Cleveland, D. Scharf and J. Jortner, J. Phys. Chem. 91, 4890 (1987). Int. J. Quant. Chem. 21, 573 (1987).CrossRefGoogle Scholar
  40. [36]
    J. Jortner, D. Scharf and U. Landman, “Molecular Clusters”, in “Elemental and Molecular Clusters”, Eds. G. Benedek, T. P. Martin, and G. Pacchioni (Springer-Verlag, Berlin, 1988).Google Scholar
  41. [37]
    D. Scharf, U. Landman and J. Jortner, J. Chem. Phys. 87, 2716 (1987).ADSCrossRefGoogle Scholar
  42. [38]
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, Phys. Rev. Lett. 59, 811 (1987).ADSCrossRefGoogle Scholar
  43. [39]
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, J. Chem. Phys. 88, 4421, 4429 (1987).ADSCrossRefGoogle Scholar
  44. [40]
    R. N. Barnett, U. Landman, C. L. Cleveland, N. R. Kestner and J. Jortner, J. Chem. Phys. 88, 6670 (1988).ADSCrossRefGoogle Scholar
  45. [41]
    D. Scharf, J. Jortner and U. Landman, Chem. Phys. Lett. 130, 5504 (1986).CrossRefGoogle Scholar
  46. [42]
    J. Luo, U. Landman and J. Jortner in “Physics and Chemistry of Small Clusters”, Eds. P. Jena, B. K. Rao and S. N. Khanna (Plenum, New York, 1987), p. 201.Google Scholar
  47. [43]
    P. P. Edwards, Advances in Inorg. and Radiochem. 25, 135 (1982).CrossRefGoogle Scholar
  48. [44]
    W. Weyl, Ann. Phys. 197, 601 (1863).Google Scholar
  49. [45]
    E. J. Hart and J. W. Boag, J. Am. Chem. Soc. 84, 4090 (1962).CrossRefGoogle Scholar
  50. [46]
    “Solutions Metal-Ammonia”, Eds. G. Lepoutre and M. Sienko (Benjamin, New York, 1964); “Metal-Ammonia Solutions”, Eds. J. J. Lagowski and M. Sienko (Butterworth, London, 1970). “Electrons in Fluids”, Eds. J. Jortner and N. R. Kestner (Springer-Verlag, Berlin, 1973). Canad. J. Chem. 55, 1795-2277 (1977).Google Scholar
  51. [47]
    H. Haberland, H. Langosch, H. G. Schindler and D. R. Worsnop, Surface Sci. 156, 157 (1985).ADSCrossRefGoogle Scholar
  52. [48]
    H. Haberland, H. G. Schindler and D. R. Worsnop, J. Chem. Phys. 81, 3742 (1984).ADSCrossRefGoogle Scholar
  53. [49]
    J. V. Coe, D. R. Worsnop and K. H. Bowen, J. Chem. Phys. (to be published).Google Scholar
  54. [50]
    M. Knapp, O. Echt, D. Kreisle and E. Recknagel, J. Chem. Phys. 85, 636 (1986).ADSCrossRefGoogle Scholar
  55. [51]
    M. Kanpp, O. Echt, D. Kreisle and E. Racknagel, J. Phys. Chem. 91, 2601 (1987).Google Scholar
  56. [52]
    H. Haberland, H. G. Schindler and D. R. Worsnop, Ber. Bunsenges. Phys. Chem. 88, 270 (1984).Google Scholar
  57. [53]
    J. Schnitker and P. J. Rossky, J. Chem. Phys. 86, 3462 (1987).ADSCrossRefGoogle Scholar
  58. [54]
    R. N. Barnett, U. Landman, C. L. Cleveland, N. R. Kestner and J. Jortner, “Excess Electrons in Ammonia Clusters”, Chem. Phys. Lett. (to be published, 1988).Google Scholar
  59. [55]
    M. Newton, J. Chem. Phys. 58, 5833 (1973)ADSCrossRefGoogle Scholar
  60. A. N. Rao and N. R. Kestner, J. Chem. Phys. 80, 1587 (1984).ADSCrossRefGoogle Scholar
  61. [56]
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, “Size Dependence of the Energetics of Electron Attachment to Large Water Clusters”, Chem. Phys. Lett. 145, 382 (1988).ADSCrossRefGoogle Scholar
  62. [57]
    J. Jortner, J. Chem. Phys. 30, 839 (1959).ADSCrossRefGoogle Scholar
  63. [58]
    M. Newton, J. Phys. Chem. 79, 2795 (1975).CrossRefGoogle Scholar
  64. [59]
    J. Schnitker, K. Motakabbir, P. J. Rossky and R. Friesher, Phys. Rev. Lett. 60, 456 (1988).ADSCrossRefGoogle Scholar
  65. [60]
    D. F. Coker and B. J. Berne, “Excess Electronic States in Fluid Helium”, J. Chem. Phys. (1988).Google Scholar
  66. [61]
    R. Kosloff and H. Talezer, Chem. Phys. Lett. 127, 223 (1986).ADSCrossRefGoogle Scholar
  67. [62]
    A. Selloni, P. Carenvali, R. Car and M. Parrinello, Phys. Rev. Lett. 59, 823 (1987).ADSCrossRefGoogle Scholar
  68. [63]
    A. Wallqvist, D. Thirumalai and B. J. Berne, J. Chem. Phys. 85, 1583 (1986).ADSCrossRefGoogle Scholar
  69. [64]
    D. J. Chipman, J. Phys. Chem. 82, 1980 (1978).CrossRefGoogle Scholar
  70. [65]
    J. R. Reimers and R. D. Watts, Chem. Phys. 85, 83 (1984).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • U. Landman
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations