Advertisement

Gerinnung und Infektabwehr — Ein phylogenetisches Erfolgskonzept als Ursache disseminierter intravasaler Gerinnung?

  • A. Bierhaus
  • P. P. Nawroth
Conference paper

Zusammenfassung

Die gleichzeitige Aktivierung der Immunantwort und des Gerinnungssystems nach Verletzung ist ein phylogenetisch altes, adaptives Prinzip, das bereits in frühen Entwicklungsstufen von Eukaryonten beobachtet werden kann. Die enge Verbindung von Gerinnung, Entzündung und Immunabwehr hat sich während der Evolution erhalten und kann im Menschen bei zahlreichen physiologischen Reaktionen auf potentiell schädigende Einflüsse nachgewiesen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abraham E (2000) Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis. Crit Care Med 28: S31–S33PubMedCrossRefGoogle Scholar
  2. 2.
    Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19: 3325–3336CrossRefGoogle Scholar
  3. 3.
    Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12: 13–19PubMedCrossRefGoogle Scholar
  4. 4.
    Arbibe L, Mira JP, Teusch N et al. (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rae 1-dependent pathway. Nat Immunol 1: 533–540PubMedCrossRefGoogle Scholar
  5. 5.
    Baeuerle PA (1998) Proinflammatory signaling: Last pieces in the NF-kB puzzle? Curr Biol 8: R19–R22PubMedCrossRefGoogle Scholar
  6. 6.
    Baeuerle PA, Baltimore D (1996) NF-kB: ten years after. Cell 87: 13–20PubMedCrossRefGoogle Scholar
  7. 7.
    Baeuerle PA, Henkel T (1994) Function and activation of NF-kB in the immune system. Annu Rev Immunol 12: 141–179PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes PJ, Karin M (1997) Nuclear Factor-kB — a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071PubMedCrossRefGoogle Scholar
  9. 9.
    Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15: 74–80PubMedCrossRefGoogle Scholar
  10. 10.
    Bergner A, Muta T, Iwanaga S, Beisel HG, Delotto R, Bode W (1997) Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol Chem378: 283–287Google Scholar
  11. 11.
    Bergner A, Oganessyan V, Muta T, Iwanaga S, Typke D, Huber R, Bode W (1996) Crystal structure of a coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J 15: 6789–6797Google Scholar
  12. 12.
    Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedCrossRefGoogle Scholar
  13. 13.
    Beutler B, Poltorak A (2001) Sepsis and evolution of the innate immune response. Crit Care Med 29:S2-S6 (discussion S6–S7 )Google Scholar
  14. 14.
    Bierhaus A, Chen J, Liliensiek B, Nawroth PP (2000) LPS and cytokine activated endothelium. Sem Thromb Hemost 26: 571–587CrossRefGoogle Scholar
  15. 15.
    Bohrer H, Nawroth PP (1996) Pathophysiologic, Klinik und Therapie intensivmedizi-nischer Krankheitsbilder mit DIC. In: Hach-Wunderle V, Nawroth PP (Hrsg) Lebens-bedrohliche Gerinnungsstörungen in der Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S. 3–43Google Scholar
  16. 16.
    Bohrer H, Qiu F, Zimmermann T et al. (1997) Role of NF-kB in the mortality of sepsis. J Clin Invest 100: 972–985PubMedCrossRefGoogle Scholar
  17. 17.
    Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103–1107PubMedCrossRefGoogle Scholar
  18. 18.
    Bulger EM, Maier RV (2000) Lipid mediators in the pathophysiology of critical illness. Crit Care Med 28: N27–N36PubMedCrossRefGoogle Scholar
  19. 19.
    Carrell RW, Boswell DR (1986) Serpins: the superfamily of plasma serine protease inhibitors. In: Barrett AJ, Salvesen G (eds) Proteinases. Elsevier, New York, p 403–420Google Scholar
  20. 20.
    Dhainaut JF, Vallet B (2001) Combined procoagulant and innate immune responses to infection: toward more potent drugs in septic patients. Crit Care Med 29: 205–207PubMedCrossRefGoogle Scholar
  21. 21.
    Dickneite G, Paques EP (1993) Reduction of mortality with antithrombin III in septicemic rats: a study of Klebsiella pneumoniae induced sepsis. Thromb Haemost 69: 98–102PubMedGoogle Scholar
  22. 22.
    Drushay MS, Asling B, Hultmark D (1996) Origins of immunity: relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93: 10343–10347CrossRefGoogle Scholar
  23. 23.
    Ducceschi V (1903) Untersuchungen über die Blutgerinnung bei wirbellosen Tieren. Hofmeisters Beitr Chem Physiol Pathol 3: 378–384Google Scholar
  24. 24.
    Faust SN, Heyderman RS, Levin M (2001) Coagulation in severe sepsis: a central role for thrombomodulin and activated protein C. Crit Care Med 29: S62–S67 (discussion S67–S68 )Google Scholar
  25. 25.
    Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272: 50–53PubMedCrossRefGoogle Scholar
  26. 26.
    Fisher CJ Jr, Yan SB (2000) Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 28 (9 Suppl): S49–S56PubMedCrossRefGoogle Scholar
  27. 27.
    Fujimoto K, Okino N, Kawabata SI, Iwanaga S, Ohnishi E (1995) Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase Al of Drosophila melanogaster. Proc Natl Acad Sci USA 92: 7769–7773PubMedCrossRefGoogle Scholar
  28. 28.
    Ghosh S, May MJ, Kopp EB (1998) NF-kB and Rel proteins. Evolutionary conserved mediators of immune response. Annu Rev Immunol 16: 225–260Google Scholar
  29. 29.
    Gokudan S, Muta T, Tsuda R et al. (1999) Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA 96: 10086–10091PubMedCrossRefGoogle Scholar
  30. 30.
    Gonzalez-Crespo S, Levine M (1994) Related target enhancers for dorsal and NF-kappa B signaling pathways. Science 264: 255–258PubMedCrossRefGoogle Scholar
  31. 31.
    Govind S, Steward R (1991) Dorsoventral formation in Drosophila: signal transduction and nuclear targeting. Trends Genet 7: 119–125PubMedGoogle Scholar
  32. 32.
    Harada-Suzuko T, Moriata T, Iwanaga S, Nakamura S, Niwa M (1992) Further studies on the chromogenic acid method for bacterial endotoxins using horseshoe crab ( Tachypleus tridenatus) hemocyte lysate. J Biochem 92: 793–800Google Scholar
  33. 33.
    Hedengren M, Asling B, Dushay M, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4: 827–837PubMedCrossRefGoogle Scholar
  34. 34.
    Hemmi H, Takeuchi O, Kawai T et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffmann JA, Reichhart JM (1997) Drosophila immunity. Trends Cell Biol 7: 309–316CrossRefGoogle Scholar
  36. 36.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313–1318PubMedCrossRefGoogle Scholar
  37. 37.
    Hoshino K, Takeuchi O, Kawai T et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752PubMedGoogle Scholar
  38. 38.
    Hultmark D (1993) Immune reactions in drosophila and other insects: a model for innate immunity. Trends Genet 9: 178–183PubMedCrossRefGoogle Scholar
  39. 39.
    Imler JL, Hoffmann JA (2000) Signaling mechanism in the antimicrobial host defense of drosophila. Curr Opin Microbiol 3: 16–22PubMedCrossRefGoogle Scholar
  40. 40.
    Imler JL, Hoffmann JA (2000) Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev Immunogenet 2: 294–304PubMedGoogle Scholar
  41. 41.
    Imler JL, Hoffmann JA (2001) Toll receptors in innate immunity. Trends Cell Biol 11: 304–311PubMedCrossRefGoogle Scholar
  42. 42.
    Imler JL, Tauszig S, Jouanguy E, Forestier C, Hoffmann JA (2000) LPS-induced immune response in Drosophila. J Endotoxin Res 6: 459–462PubMedGoogle Scholar
  43. 43.
    Ingalls RR, Heine H, Lien E, Yoshimura A, Golenbock D (1999) Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13: 341–353PubMedCrossRefGoogle Scholar
  44. 44.
    Inthorn D, Hoffmann JN, Hartl WH, Muhlbayer D, Jochum M (1998) Effect of anti-thrombin III supplementation on inflammatory response in patients with severe sepsis. Shock 10: 90–96PubMedCrossRefGoogle Scholar
  45. 45.
    Ip VT, Reach M, Engstrom Y et al. (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75: 753–763PubMedCrossRefGoogle Scholar
  46. 46.
    Iwanaga S (1993) Primitive coagulation systems and their message to modern biology. Thromb Haemost 70: 48–55PubMedGoogle Scholar
  47. 47.
    Iwanaga S, Kawabata S (1998) Evolution and phylogeny of defense molecules associated immunity in horseshoe crab. Front Biosci 3: 973–984Google Scholar
  48. 48.
    Iwanaga S, Miyata T, Tokunaga F, Muta T (1992) Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res 68: 1–32PubMedCrossRefGoogle Scholar
  49. 49.
    Iwanaga S, Muta T, Shigenaga T, Miura Y, Seki N, Saito T, Kawabata S (1994) Role of hemocyte-derived granular components in invertebrate defense. Ann NY Acad Sci 712: 102–116PubMedCrossRefGoogle Scholar
  50. 50.
    Jagadeeswaran P, Sheehan JP (1999) Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis 25: 239–249PubMedCrossRefGoogle Scholar
  51. 51.
    Kaiser V, Diamond G (2000) Expression of mammalian defensin genes. J Leukoc Biol 68: 779–784PubMedGoogle Scholar
  52. 52.
    Kaisho T, Akira S (2001) Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand 59: 124–130PubMedCrossRefGoogle Scholar
  53. 53.
    Kawasaki H, Nose T, Muta T, Iwanaga S, Shimohigashi Y, Kawabata S (2000) Head-to-tail polymerization of coagulin, a clottable protein of the horseshoe crab. J Biol Chem 275: 35297–35301PubMedCrossRefGoogle Scholar
  54. 54.
    Khush RS, Lemaitre B (2000) Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet 16: 442–449PubMedCrossRefGoogle Scholar
  55. 55.
    Lasch HG, Heene DL, Huth K, Sandritter W (1967) Pathophysiology, clinical manifestations and therapy of consumption-coagulopathy (Verbrauchskoagulopathie). Am J Cardiol 20: 381–391PubMedCrossRefGoogle Scholar
  56. 56.
    Lee WL, Downey GP (2000) Coagulation inhibitors in sepsis and disseminated intravascular coagulation. Intensive Care Med 26: 1701–1706PubMedCrossRefGoogle Scholar
  57. 57.
    Lemaitre B, Nicolas E, Michaut L, Reichart JM, Hofmann JA (1996) The dorsoventral regulatory gene cassette Spaetzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983PubMedCrossRefGoogle Scholar
  58. 58.
    Lemaitre B, Reichart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94: 14614–14619PubMedCrossRefGoogle Scholar
  59. 59.
    Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichart JM (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917–1919PubMedCrossRefGoogle Scholar
  60. 60.
    Levi M, de Jonge E, van der Poll T (2001) Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med 29: S90–S94Google Scholar
  61. 61.
    Levin J (1988) The horseshoe crab: a model for gram-negative sepsis in marine organisms and humans. Prog Clin Biol Res 272: 3–15PubMedGoogle Scholar
  62. 62.
    Means TK, Golenbock DT, Fenton MJ (2000) The biology of Toll-like receptors. Cytokine Growth Factor Rev 11: 219–232PubMedCrossRefGoogle Scholar
  63. 63.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388: 394–397PubMedCrossRefGoogle Scholar
  64. 64.
    Mesters RM, Helterbrand J, Utterback BG et al. (2000) Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med 28: 2209–2216PubMedCrossRefGoogle Scholar
  65. 65.
    Miura Y, Kawabata S, Wakamiya Y, Nakamura S, Iwanaga S (1995) A limulus intracellular coagulation inhibitor Type 2. J Biol Chem 270: 558–565PubMedCrossRefGoogle Scholar
  66. 66.
    Modlin RL, Brightbill HD, Godowski PJ (1999) The toll of innate immunity on microbial pathogens. N Engl J Med 340: 1834–1835PubMedCrossRefGoogle Scholar
  67. 67.
    Muta T, Iwanaga S (1996) The role of hemolymph coagulation in innate immunity. Curr Opin Immunol 8: 41–47PubMedCrossRefGoogle Scholar
  68. 68.
    Muta T, Hashimoto R, Miyata T, Nishiomura H, Toh Y, Iwanaga S (1990) Proclotting enzyme from horseshoe crab hematocytes. cDNA cloning, disulfid location and subcellular localization. J Biol Chem 265: 22426–22433PubMedGoogle Scholar
  69. 69.
    Muta T, Miyata T, Misumi Y. (1991) Limulus factor C: An endotoxin sensitive serine protease zymogen with mosaic structure of complement-like, epidermal growth factor like and lectin-like domains. J Biol Chem 266: 6552–6561Google Scholar
  70. 70.
    Muta T, Nakamura T, Furunaka H, Tokunaga F, Miyata T, Niwa M, Iwanaga S (1990) Primary structures and functions of anti-lipopolysaccharide factor and tachyplesin peptide found in horseshoe crab hemocytes. Adv Exp Med Biol 56: 273–285Google Scholar
  71. 71.
    Muta T, Oda T, Iwanaga S (1993) Horseshoe crab coagulation factor B. A unique serine protease zymogen activated vy cleavage of lie bond. J Biol Chem 268: 21384–21388Google Scholar
  72. 72.
    Nagai T, Kawabata S (2000) A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 275:29 264–29 267Google Scholar
  73. 73.
    Nakamura S, Morita T, Hazard-Suzuki T, Iwanaga S, Takahashi K, Niwa M (1982) A clotting enzyme associated with the hemolymph coagulation system of the horseshoe crab (Tachypleus tridenatus): its purification and characterization. J Biochem 92: 781–792PubMedGoogle Scholar
  74. 74.
    Nakamura S, Takagi S, Iwanaga M, Niwa M, Takahashi K (1976) Amino acid sequence produced from horse shoe crab coagulogen during gel formation: homologies with primate fibrinopeptide B. Biochem Biophys Res Commun 72: 902–908PubMedCrossRefGoogle Scholar
  75. 75.
    Niwa M, Hua H, Iwanaga S et al. (1990) Biological activities of anti-LPS factor and LPS binding peptide from horseshoe crab amoebocytes. Adv Exp Med Biol 256: 257–271PubMedGoogle Scholar
  76. 76.
    Novitsky TJ (1998) Limitations of the Limulus amebocyte lysate test in demonstrating circulating lipopolysaccharides. Ann NY Acad Sci 851: 416–421PubMedCrossRefGoogle Scholar
  77. 77.
    Okajima K, Uchiba M (1998) The anti-inflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemost 24: 27–32PubMedCrossRefGoogle Scholar
  78. 78.
    Opal SM (2000) Therapeutic rationale for antithrombin III in sepsis. Crit Care Med 28: S34–S37PubMedCrossRefGoogle Scholar
  79. 79.
    Opal SM (2000) Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med 28: S77–S80PubMedCrossRefGoogle Scholar
  80. 80.
    Opal SM, Palardy JE, Parejo NA, Creasey AA (2001) The activity of tissue factor pathway inhibitor in experimental models of superantigen-induced shock and polymicrobial intra-abdominal sepsis. Crit Care Med 29: 13–17PubMedCrossRefGoogle Scholar
  81. 81.
    Opal S, Thijs L, Cavaillon JM, Cohen J, Fourrier F (2000) Roundtable I: relationships between coagulation and inflammatory processes. Crit Care Med 28 S81–S82PubMedCrossRefGoogle Scholar
  82. 82.
    Poltorak A, He X, Smirnova I et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088PubMedCrossRefGoogle Scholar
  83. 83.
    Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189: 615–625PubMedCrossRefGoogle Scholar
  84. 84.
    Rietschel ET, Westphal O (1999) Endotoxin: historical perspectives. In: Brade H, Opal SM, Vogel SN et al. (eds.) Endotoxin in health and disease. Marcel Dekker, New York, p 1–30Google Scholar
  85. 85.
    Robey FA, Liu TY (1981) Limulin: a C-reactive protein from Limulus polyphemus. J Biol Chem 256: 969–975PubMedGoogle Scholar
  86. 86.
    Roth RI, Levin J (1992) Purification of limulus polyphemus proclotting enzyme. J Biol Chem 267: 24097–24102PubMedGoogle Scholar
  87. 87.
    Roth RI, Su D, Child AH, Wainwright NR, Levin J (1998) Limulus antilipopolysaccha-ride factor prevents mortality late in the course of endotoxemia. J Infect Dis 177: 388–394PubMedCrossRefGoogle Scholar
  88. 88.
    Saito T, Kawabata S, Shigenaga T et al. (1995) A novel big defensin identified in horse-shoe crab hemocytes: isolation, amino acid sequence and antibacterial activity. J Biochem 1117: 1131–1137Google Scholar
  89. 89.
    Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga S (1995) Horseshoe crab (l,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem 270: 986Google Scholar
  90. 90.
    Sheehan J, Templer M, Gregory M. (2001) Demonstration of the extrinsic coagulation pathway in teleostei: Identification of zebrafish coagulation factor VII. Proc Nat Acad Sci USA 98: 8768–8733Google Scholar
  91. 91.
    Soderhall K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10: 23–28PubMedCrossRefGoogle Scholar
  92. 92.
    Stenflo J (1999) Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 9: 59–88PubMedGoogle Scholar
  93. 93.
    Takeuchi O, Hoshino K, Kawai T et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451PubMedCrossRefGoogle Scholar
  94. 94.
    Tanaka S, Nakamura T, Morita T, Iwanaga S (1982) Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 105: 717–723PubMedCrossRefGoogle Scholar
  95. 95.
    ten Cate H, Schoenmakers SH, Franco R, Timmerman JJ, Groot AP, Spek CA, Reitsma PH (2001) Microvascular coagulopathy and disseminated intravascular coagulation. Crit Care Med 29:S95-S97 (discussion S97–S98 )Google Scholar
  96. 96.
    Ulevitch RJ (2001) New therapeutic targets revealed through investigations of innate immunity. Crit Care Med 29 (7 Suppl): S8–S12PubMedCrossRefGoogle Scholar
  97. 97.
    Vallet B, Wiel E (2001) Endothelial cell dysfunction and coagulation. Crit Care Med 29: S36–S41PubMedCrossRefGoogle Scholar
  98. 98.
    Van Zoelen EJ, Stortelers C, Lenferink AE, Van de Poll ML (2000) The EGF domain: requirements for binding to receptors of the ErbB family. Vitam Horm 59: 99–131Google Scholar
  99. 99.
    Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylo-genetically conserved paradigm in innate immunity. J Clin Invest 107: 13–19PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Maizels RM (2001) Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem Sci 26: 191–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Bierhaus
  • P. P. Nawroth

There are no affiliations available

Personalised recommendations