Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 71))

Abstract

Burst activity is characterized by slowly alternating phases of near steady state behavior and trains of rapid spike-like oscillations; examples of bursting patterns are shown in Fig. 2. These two phases have been called the silent and active phases respectively [2], In the case of electrical activity of biological membrane systems the slow time scale of bursting is on the order of tens of seconds while the spikes have millisecond time scales. In our study of several specific models for burst activity we have identified a number of different mechanisms for burst generation (which are characteristic of classes of models). We will describe qualitatively some of these mechanisms by way of the schematic diagrams in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. B., and J. A. Benson. 1985. The generation and modulation of endogenous rhythmieity in the Aplysia bursting pacemaker neurone R15. Prog. Biophys. Molec. Biol. 46;1–49.

    Article  Google Scholar 

  2. Atwater, I., C. M. Dawson, A. Scott, G. Eddiestone, E. Rojas. 1980. The nature of the oscillatory behavior in electrical activity for pancreatic β-cell. J. of Hormone and Metabolic Res., Suppl. 10:100–107.

    Google Scholar 

  3. Atwater, I., B. Ribalet, and E. Rojas. 1979. Mouse pancreatic β-cells: tetra-ethylammonium blockage of the potassium permeability increase induced by depolarization. J. Physiol. 288:561–574.

    Google Scholar 

  4. Atwater, I., and J. Rinzel. The β-cell bursting pattern and intracellular calcium. In Ionic Channels in Cells and Model Systems (ed., R. Latorre). Plenum, New York, 1986.

    Google Scholar 

  5. Beigelman, P. M., B. Ribalet, and I. Atwater. 1977. Electrical activity of mouse pancreatic beta-cells II. Effects of glucose and arginine. J. Physiol., Paris 73:201–217.

    Google Scholar 

  6. Chay, T. R., and J. Keizer. 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42:181–190.

    Article  Google Scholar 

  7. Chay, T. R., and J. Keizer. 1985. Theory of the effect of extracellular potassium en oscillations in the pancreatic β-cell. Biophys. J. 48:815–827.

    Article  Google Scholar 

  8. Chay, T. R., and J. Rinzel. 1985. Bursting, beating, and chaos in an excitable membrane model. Biophys. J. 47:357–366.

    Article  Google Scholar 

  9. Doedel, E. J. Software for Continuation Problems in Ordinary Differential Equations. Tech. Report, Applied Math. Dept., Cal Tech., 1986.

    Google Scholar 

  10. FitzHugh, R. 1961. Impulses and physiological states in models of nerve membrane. Biophys. J. 1:445–466.

    Article  Google Scholar 

  11. Guttman, R., S. Lewis, and J. Rinzel. 1980. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J. Physiol. 305:377–395.

    Google Scholar 

  12. Guttman, R., and R. Barnhill. 1970. Oscillation and repetitive firing in squid axons: Comparison of experiments with computations. J. Gen. Physiol. 55:104–118.

    Article  Google Scholar 

  13. Hindmarsh, A. C. Ordinary differential equations systems solver. Report UCID-30001. Lawrence Livermore Lab. Livermore, CA, 1974.

    Google Scholar 

  14. Hindmarsh, J. L., and R. M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221:87–102.

    Article  Google Scholar 

  15. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its applicaton to conduction and excitation in nerve. J. Physiol. (Lond) 117:500–544.

    Google Scholar 

  16. Honorkamp, J., G. Mutschler, and R. Seitz. 1985. Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol. 47:1–21.

    MathSciNet  Google Scholar 

  17. Hsu, I., and N. K. Kazarinoff. 1976. An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. App. 55:61–89.

    Article  MathSciNet  Google Scholar 

  18. Kopell, N., and G. B. Ermentrout. 1986. Subcellular oscillations and bursting. Math. Biosci. 78:265–291.

    Article  MATH  MathSciNet  Google Scholar 

  19. Martiel, J. L., and A. Goldbeter. Origin of bursting and biorhythmicity in a model for cyclic AMP oscillations in Dictyostelium cells. In Proceedings of Kyoto International Symposium on Mathematical Biology (ed., E. Teramoto). Springer, to appear.

    Google Scholar 

  20. Nagumo, J. S., S. Arimoto, and S. Yoshizawa. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE. 50:2061–2070.

    Article  Google Scholar 

  21. Plant, R. E. 1981. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol. 11:15–32.

    Article  MATH  MathSciNet  Google Scholar 

  22. Rinzel, J. 1978. On repetitive activity in nerve. Federation Proc. 37:2793–2802.

    Google Scholar 

  23. Rinzel, J. Bursting oscillations in an excitable membrane model. In Ordinary and Partial Differential Equations (eds., B. D. Sleeman and R. J. Jarvis). Lecture Notes in Mathematics 1151, Springer-Verlag, New York, 1985.

    Google Scholar 

  24. Rinzel, J., and Y. S. Lee. On different mechanisms for membrane potential bursting. In Nonlinear Oscillations in Biology and Chemistry (ed., H. G. Othmer). Springer, New York, to appear.

    Google Scholar 

  25. Rinzel, J., and Y. S. Lee. Dissection of a model for neuronal parabolic bursting, preprint.

    Google Scholar 

  26. Rinzel, J., and I. B. Schwartz. 1984. One variable map prediction of Belousov-Zhabotinskii mixed mode oscillations. J. Chem. Phys. 80:5610–5615.

    Article  Google Scholar 

  27. Rinzel, J., and W. C. Troy. 1982. Bursting phenomena in a simplified Oregonator flow system model. J. Chem. Phys. 76:1775–1789.

    Article  MathSciNet  Google Scholar 

  28. Siska, J., L. Kubinova, and I. Dvorak. Time hierarchy in systems with general attractors. In Proceedings of the Fourth International Conference on Mathematical Modeling (Zurich, 1983). Pergamon Press, to appear.

    Google Scholar 

  29. Tikhonov, A. N. 1952. Systems of differential equations containing a small parameter multiplying the highest derivatives. Mat. Sb. NS (31) 73:575–585. (in Russian)

    Google Scholar 

  30. Troy, W. C. 1974. Oscillation phenomena in nerve conduction equations. Doctoral thesis, State Univ. of New York at Buffalo.

    Google Scholar 

  31. Wasow, W. Asymptotic Expansions for Ordinary Differential Equations. Wiley-Interscience, New York, 1965, pps. 297–303.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rinzel, J. (1987). A Formal Classification of Bursting Mechanisms in Excitable Systems. In: Teramoto, E., Yumaguti, M. (eds) Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. Lecture Notes in Biomathematics, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93360-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93360-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17875-0

  • Online ISBN: 978-3-642-93360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics