Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 71))

Abstract

In this presentation we discuss methods for inverse or parameter estimation problems which can be employed as quantitative modeling techniques in models for distributed (spatially, age, size, etc.) biological systems. In this context they may be useful in attempts to understand, elaborate on, or further refine details of specific mechanisms for dispersal, growth, interaction, etc. in wide classes of models. We have also used these techniques in a number of biologically related problems [1] such as bioturbation [12], [14], [15] and climatology [19]. In addition to an overview of ideas underlying these techniques, we shall present here brief discussions and some findings on two specific biological problems for which we are currently using them successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.T. Banks, On a variational approach to some parameter estimation problems, Proc. Int. Conf. on Control Theory for Distributed Parameter Systems and Applications (Vorau, Austria, July 9–14, 1984); LCDS Report #85–14, Brown University, May 1985.

    Google Scholar 

  2. H.T. Banks, J.M. Crowley and K. Kunisch, Cubic spline approximation techniques for parameter estimation in distributed systems, IEEE Trans. Auto. Control, AC-28. (1983), 773–786.

    Article  MathSciNet  Google Scholar 

  3. H.T. Banks and P. Kareiva, Parameter estimation techniques for transport equations with applications to population dispersal and tissue bulk flow models, J. Math. Biology, 17, (1983), 253–273.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.T. Banks, P. Kareiva and P.K. Lamm, Estimation techniques for transport equations, Mathematics in Biology and Medicine, Proceedings, Bari 1983, (V. Capasso et al. Eds.), Springer Lecture Notes in Biomath., 57, (1985), 428–438.

    Google Scholar 

  5. H.T. Banks, P.M Kareiva and P.K. Lamm, Modeling insect dispersal and estimating parameters when mark-release techniques may cause initial disturbances, J. Math. Biol., 22, (1985), 259–277.

    Article  MATH  MathSciNet  Google Scholar 

  6. H.T. Banks, P. Kareiva and L. Zia, Analyzing field studies of insect dispersal with two-dimensional transport equations, to appear.

    Google Scholar 

  7. H.T. Banks and K. Kunisch, An approximation theory for nonlinear partial differential equations with applications to identification and control, SIAM J. Control and Opt. 20, (1982), 815–849.

    Article  MATH  MathSciNet  Google Scholar 

  8. H.T. Banks and P. Daniel Lamm, Estimation of variable coefficients in parabolic distributed systems, LCDS Report #82–22, Brown University, Sept. 1982;

    Google Scholar 

  9. H.T. Banks and P. Daniel Lamm, Estimation of variable coefficients in parabolic distributed systems, IEEE Trans. Auto. Control, 30, (1985), 386–398.

    Article  MATH  Google Scholar 

  10. H.T. Banks and K.A. Murphy, Estimation of coefficients and boundary parameters in hyperbolic systems, LCDS Report #84–5, Brown University, February, 1984;

    Google Scholar 

  11. H.T. Banks and K.A. Murphy, Estimation of coefficients and boundary parameters in hyperbolic systems, SIAM J. Control and Opt, to appear.

    Google Scholar 

  12. H.T. Banks and K.A. Murphy, Estimation of parameters in nonlinear distributed systems, Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, (Dec. 12–14, 1984), 257–261.

    Google Scholar 

  13. H.T. Banks and K.A. Murphy, Estimation of nonlinearities in parabolic models for growth, predation and dispersal of populations, to appear.

    Google Scholar 

  14. H.T. Banks and I.G. Rosen, Fully discrete approximation methods for the estimation of parabolic systems and boundary parameters, LCDS Report #84–19, Brown University, May 1984; Acta. Applic. Math., to appear.

    Google Scholar 

  15. H.T. Banks and I.G. Rosen, A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies, CSDL Report R-1724, June 1984; C.S. Draper Labs, Cambridge, MA.

    Google Scholar 

  16. H.T. Banks and I.G. Rosen, Approximation methods for the solution of inverse problems in lake and sea sediment core analysis, Proc. 24th Conf. on Dec. and Control, (Dec. 11–13, 1985), Ft. Lauderdale, 732–736.

    Google Scholar 

  17. H.T. Banks and I.G. Rosen, Numerical schemes for the estimation of functional parameters in distributed models for mixing mechanisms in lake and sea sediment cores, LCDS Report 85–27, Brown University, October 1985.

    Google Scholar 

  18. H.T. Banks and D. Iles, A comparison of stability and convergence properties of techniques for inverse problems, LCDS Report #86–3, Brown University, January 1986.

    Google Scholar 

  19. L. Botsford, B. Vandracek, T. Wainwright, A. Linden, R. Kope, D. Reed, and J.J. Cech, Jr., Population development of the mosquitofish, Gambusia Affinis. in rice fields, preprint.

    Google Scholar 

  20. F. Colonius and K. Kunisch, Stability for parameter estimation in two point boundary value problems, Inst. fur Math. Bericht No. 50–1984, Tech. Univ. Graz, October, 1984.

    Google Scholar 

  21. F. Dexter, H.T. Banks and T. Webb, Modeling Holocene changes in the location and abundance of beach populations in eastern North America, J. Biogeography, to be submitted.

    Google Scholar 

  22. D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, 1977.

    Book  MATH  Google Scholar 

  23. Kareiva, P., Experimental and mathematical analysis of movement: quantifying the influence of plant spacing and quality on foraging discrimination, Ecol. Mon. 52 (1982) 261–282.

    Article  Google Scholar 

  24. Kareiva, P., Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments, Oecologia (Berl.) 57, (1983) 322–327.

    Article  Google Scholar 

  25. Kareiva, P., Influence of vegetation texture on herbivore populations: resource concentration as herbivore movement. In Denno & McClure (eds.) Variable Plants and Herbivores in Natural and Managed Systems. New York: Academic Press (1983).

    Google Scholar 

  26. Kareiva, P., Predator-prey dynamics in spatially-structured populations: manipulating dispersal in a coccinellid-aphid interaction. Springer Lect. Notes in Biomathematics, 54. (1984) 368–389.

    MathSciNet  Google Scholar 

  27. K. Kunisch and L.W. White, Identifiability under approximation for an elliptic boundary value problem, SIAM J. Control and Opt., to appear.

    Google Scholar 

  28. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  29. MH. Schultz, Spline Analysis, Prentice Hall, Englewood Cliffs, 1973.

    MATH  Google Scholar 

  30. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol. 79, (1979), 83–99.

    Article  MathSciNet  Google Scholar 

  31. N. Shigesada and E. Teramoto, A consideration on the theory of environmental density, Japanese J. Ecol., 28 (1978), 1–8.

    Google Scholar 

  32. T.C. Wainwright, R.G. Kope, L.W. Botsford, and J.J. Cech Jr., Implications of laboratory mosquitofish experiments for population development in rice fields, Proc. 52nd Conf. Calif. Mosquito and Vector Control Assoc. (Jan. 29–Feb. 1, 1984).

    Google Scholar 

  33. L.L. Zia, Parameter Estimation Techniques for Two-dimensional Transport Equations with Application to Models of Insect Dispersal, Ph.D. Thesis, Brown University, May 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banks, H.T., Murphy, K.A. (1987). Quantitative Modeling of Growth and Dispersal in Population Models. In: Teramoto, E., Yumaguti, M. (eds) Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. Lecture Notes in Biomathematics, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93360-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93360-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17875-0

  • Online ISBN: 978-3-642-93360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics