Advertisement

Introduction

  • A. Plonka
Part of the Lecture Notes in Chemistry book series (LNC, volume 40)

Abstract

In the late seventies we have endeavoured to describe adequately (Plonka et al. 1979) the complex decay patterns of radiation produced hydrogen atoms in low-temperature aqueous glasses with the use of the time-dependent rate constant k(t) of the form
$${\text{k(t) = B}}{{\text{t}}^{{\alpha - 1}}},{\text{ 0 < }}\alpha \leqslant {\text{1}}$$
(1.1)
where B and ∝ are constants. This peculiar form (1.1) of the time-dependent rate constant was derived from the continuous time random walk, CTRW, model developed for the anomalous electron transit-time dispersion in amorphous solids (Scher and Montroll 1975) and used to describe the decay of excess electrons trapped in rigid glassy matrices (Hamill and Funabashi 1977).

Keywords

Electron Spin Resonance Continuous Time Random Walk Atom Decay Reactivity Distribution Freeze Aqueous Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendler JT (1984) Lévy (stable) probability densities and mechanical relaxation in solid polymers. J Statist Phys 34: 625–637.CrossRefGoogle Scholar
  2. Bendler JT, Shlesinger MF (1985) Derivation of the Kohlrausch-Williams/ Watts decay law from activation energy dispersion. Macromolecules 18: 591–921.CrossRefGoogle Scholar
  3. Bøckmann B, Moan J (1976) On the decay of H and D atoms in aqueous sulphuric acid glases. Isotope effects. Chem Phys Lett 42: 575–577.CrossRefGoogle Scholar
  4. Ershov BG, Chernova GP, Grinberg OYa, Lebedev YaS (1968) Spatial distribution of radicals in γirradiated frozen aqueous solutions (Russ). Izv Akad Nauk SSSR, Ser Khim 2439-2443.Google Scholar
  5. Hamill WH, Funabashi K (1977) Kinetics of electron trapping reactions in amorphous solids; a non-Gaussian diffusion model. Phys Rev B 16: 5523–5527.CrossRefGoogle Scholar
  6. Kohlrausch F (1863) Ueber die elastische Nachwirkung bei der Torsion. Pogg Ann 119: 337–368.CrossRefGoogle Scholar
  7. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Pogg Ann 91: 179–214.CrossRefGoogle Scholar
  8. Kroh J, Plonka A (1975) Trapped hydrogen atom decay in τ-irradiated sulfuric acid glasses at 63 — 90 K. J Phys Chem 79: 2600–2602.CrossRefGoogle Scholar
  9. Majumdar CK (1971) Stress relaxation function of glass. Solid State Comm 9: 1087–1090.CrossRefGoogle Scholar
  10. Montroll EW, Bendler JT, (1984) On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation. J Statist Phys 34: 129–162.CrossRefGoogle Scholar
  11. Plonka A, Bogus W, Kroh J (1982) Effect of irradiation temperature on the decay rate of trapped hydrogen atoms in sulfuric acid glasses. Radiat Phys Chem 19: 389–392.Google Scholar
  12. Plonka A, Kroh J, Lefik W, Bogus W (1979) Kinetics of trap-limited hydrogen atom decay in γ-irradiated sulfuric acid glasses. J Phys Chem 83: 1807–1810.CrossRefGoogle Scholar
  13. Rajagopal K, Ngai KL, Rendell RW, Teitler S (1983) Nonexponential decay in relaxation phenomena. J Statist Phys 30: 285–292.CrossRefGoogle Scholar
  14. Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12: 2455–2477.CrossRefGoogle Scholar
  15. Smoluchowski M (1917) Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z physik Chem 92: 129–168.Google Scholar
  16. Sprague ED, Schulte-Frohlinde D (1973) Electron spin resonance investigations of the disappearance of trapped hydrogen atoms in γ-irradiated sulfuric acid glasses. J Phys Chem 77: 1222–1225.CrossRefGoogle Scholar
  17. Waite TR (1960) Bimolecular reaction rates in solids and liquids. J Chem Phys 32: 21–23.CrossRefGoogle Scholar
  18. Zimbrick J, Kevan L (1967) Paramagnetic relaxation of trapped hydrogen atoms in irradiated frozen aqueous solutions. J Chem Phys 47: 5000–5008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Plonka
    • 1
  1. 1.Institute for Applied Radiation ChemistryTechnical University (Politechnika)Lódź Wroblewskiego 15Poland

Personalised recommendations