Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 66))

  • 336 Accesses

Abstract

The voltage-controlled oscillator neuromime (VCON) described below is motivated by three things: First, van der Pols equation [1] and similar “flush-and-fill” models have been used since the 1920s to study neural activity. Subsequent work on van der Pols equation resulted in a map of parameter space that describes phase-locking of the oscillator to external forcing [2,3] Second, R. Guttman, et. al., (See 4] used experimental procedures developed by Hodgkin and Huxley for studying squid axon membranes, and they obtained a similar phase-locking portrait for these membranes. This showed that neuron membranes have rich phase-locking, or synchronization properties. Third, I developed and studied a model of a neuron that emphasizes frequency encoded information in [5]. This model is based on a voltage controlled oscillator circuit, and it is called VCON. A VCON provides a straightforward method for building circuit analogs for neural networks, and its associated mathematical model is in phase-amplitude coordinates, so it avoids a major difficulty in dealing with nonlinear oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Th. van der Pol, Phil. Mag. 2(1926)978;

    Google Scholar 

  2. see also B. Th. van der Pol and J. van der Mark, ibid. 6(1928) 763, and Arch. Need. Physiol. 14(1929) 418.

    Google Scholar 

  3. Also, K. F. Bonhoeffer, J. Gen. Physiol. 32(1948) 69, Naturwissensch. 40(1953)301.

    Article  Google Scholar 

  4. R. FitzHugh. In Biological Engineering, H. P. Schwann, ed., pp1–85, McGraw-Hill, 1962.

    Google Scholar 

  5. M. L. Cartwright, J. E. Littlewood, Ann. Math. 54(1951)1–37;

    Article  MathSciNet  Google Scholar 

  6. M. L. Cartwright, J. E. Littlewood, Camb. Phil. Soc. Proc. 45(1949)495–501;

    Article  MATH  Google Scholar 

  7. M. L. Cartwright, J. E. Littlewood, Ann. Math. 48(1947)472–494;

    Article  MATH  MathSciNet  Google Scholar 

  8. M. L. Cartwright, J. E. Littlewood, J. London. Math Soc. 20(1945)180–189.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. E. Flaherty, F. C. Hoppensteadt, Frequency entrapment of a forced van der Pol oscillator, Studies in Appi. Math. 58(1978)5–15.

    MathSciNet  Google Scholar 

  10. R. Guttman, L. Feldman, E. Jacobsson, Frequency entrainment of squid aion, J. Membr. Biol. 56(1980)9–18.

    Article  Google Scholar 

  11. F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons, Cambridge U. Press, 1985.

    Google Scholar 

  12. J. J. Stoker, Nonlinear Vibrations, Interscience, New York, 1950.

    MATH  Google Scholar 

  13. M. Levi, F. C. Hoppensteadt, W. Miranker, The dynamics of the Josephson junction, Quart. Appl. Math., July, (1978) 167–198.

    Google Scholar 

  14. F. C. Hoppensteadt, Properties of solutions of ordinary differential equations with small parameters, Comm. Pure Appl. Math. XXIV (1971) 807–840.

    Article  MathSciNet  Google Scholar 

  15. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983.

    MATH  Google Scholar 

  16. W. Chester, The forced oscillations of a simple pendulum, J. Inst. Maths. Applics., 15(1975)289–306

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoppensteadt, F.C. (1986). Analysis of a VCON Neuromime. In: Othmer, H.G. (eds) Nonlinear Oscillations in Biology and Chemistry. Lecture Notes in Biomathematics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93318-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93318-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16481-4

  • Online ISBN: 978-3-642-93318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics