Experimental Studies of Chaotic Neural Behavior: Cellular Activity and Electroencephalographic Signals

  • P. E. Rapp
  • I. D. Zimmerman
  • A. M. Albano
  • G. C. deGuzman
  • N. N. Greenbaun
  • T. R. Bashore
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 66)


Deterministic systems can display a form of highly irregular, quasirandom behavior called chaos. Even though the observed behavior is very complex, the systems which generate it can be very simple. Thus, in at least some instances, irregular biological systems may obey a simple, potentially discoverable, deterministic dynamical law. These systems can undergo reversible transitions to and from chaotic dynamics in response to small changes in parameter values. As a long term goal, this form of analysis may suggest more effective responses to disordered behavior in physiological control systems.

This contribution is concerned with chaos in neural systems and its possible role in epileptogenesis. Calculation of information dimension provides a procedure for distinguishing between chaotic and random behavior. This technique is applied to experimental data from two preparations: spontaneous activity of cortical neurons in the pre- and post-central gyri of the squirrel monkey and human electroen-cephalographic signals. In each case the results suggest that these systems can display low dimensional chaotic behavior.


Chaotic Behavior Hausdorff Dimension Strange Attractor Deterministic System Information Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, N.B., Albano, A.M., Das, B., deGuzman, G., Yong, S., Gioggia, R.S., Puccioni, G.P. and Tredicce, J.R. (1985). Calculating the dimension of attractors from small data sets. Phys. Lett. A. submitted.Google Scholar
  2. 2.
    Abraham, N.B., Gollub, J.P. and Swinney, H.L. (1984). Testing nonlinear dynamics. Physica. 11D, 252–264.Google Scholar
  3. 3.
    Adam, D.R., Smith, J.M., Askelrod, S., Nyberg, S., Powell, A.O. and Cohen, R.J. (1984). Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocard. 17, 209–218.CrossRefGoogle Scholar
  4. 4.
    Aihara, K. and Matsumoto, G. (1984). Periodic and nonperiodic responses of a periodically forced Hodgkin-Huxley oscillator. J. theor. Biol. 109, 249–269.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Albano, A.M., Abounadi, J., Chyba, T.H., Searle, C.E. and Yong, S. (1985). Low-dimensional chaotic attractors for an unstable, inhomogeneously broadened, single-mode laser. J. Opt. Soc. Amer. 2B, 47–55.Google Scholar
  6. 6.
    Alexander, J.C. and Yorke, J. (1982). The fat baker’s transformations. U. of Maryland, preprint.Google Scholar
  7. 7.
    an der Heiden, U., Mackey, H.C. and Walther, H.O. (1981). Complex oscillations in a simple deterministic neuronal network. Lectures. Appl. Maths. 19, 355–360.Google Scholar
  8. 8.
    Balatoni, J. and Renyi.A. (1956). On the notion of entropy. Publications Math. Inst. Hungarian Acad. Sci. 1, 9–40. (English translation: Selected Papers of A.Renyi. 1, 558–586, Akademiai, Budapest),MATHGoogle Scholar
  9. 9.
    Ballard, D.H., Hinton, G.E. and Sejnowski, T.J. (1983). Parallel visual computation. Nature, Lond. 306, 21–26.CrossRefGoogle Scholar
  10. 10.
    BenMizrachi, A. (1984). Elimination of irrelevant variables in nonlinear systems. Phys. Rev. 30A, 2708–2712.Google Scholar
  11. 11.
    BenMizrachi, A. and Procaccia, T. (1984). Universal power law for the dimension of strange attractors near the onset of chaos. Phys. Rev. Lett. 53, 1704.MathSciNetCrossRefGoogle Scholar
  12. 12.
    BenMizrachi, A., Procaccia, I. and Grassberger, P. (1984). Characterization of experimental (noisey) strange attractors. Phys. Rev. 29A, 975–977.Google Scholar
  13. 13.
    Blomquist, A.J. and Lorenzini, C.A. (1965). Projection of dorsal roots and sensory nerves to cortical sensory motor regions of the squirrel monkey. J. Neurophysiol. 28, 1195–1205.Google Scholar
  14. 14.
    Brandstater, A., Swift, J., Swinney, H.L., Wolf, A., Farmer, J.D., Jen, E. and Crutchfield, J.P. (1983). Low dimensional chaos in a hydrodynamic system. Phys. Rev. Lett. 51, 1442–1445.MathSciNetCrossRefGoogle Scholar
  15. 14a.
    Brandstater, A., Swift, J., Swinney, H.L., Wolf, A., Farmer, J.D., Jen, E. and Crutchfield, J.P. (1983). Low dimensional chaos in a hydrodynamic system. Correction. 51, 1814.MathSciNetGoogle Scholar
  16. 15.
    Brandstater, A. and Swinney, H.L. (1984). Distinguishing low dimensional chaos from random noise in a hydrodynamic experiment. In: Fluctuations and Sensitivity in Nonequilibrium Systems. W. Horsthemke and D.K. Kondepudi, eds. pp. 166–171. Proceedings in Physics. Volume 1. Springer-Verlag, Berlin.Google Scholar
  17. 16.
    Brillouin, L. (1962). Science and Information Theory. Academic Press, NY.MATHGoogle Scholar
  18. 17.
    Buxton B.F. (1984). GEC Research Laboratory Long Range Research Laboratory Report No. 16, 834A. Report on a Workshop on Statistical Physics in Engineering and Biology.Google Scholar
  19. 18.
    Carpenter, G.A. (1979). Bursting phenomena in excitable membranes. SIAM J. appl. Maths. 36, 334–372.MATHMathSciNetCrossRefGoogle Scholar
  20. 19.
    Carpenter, G.A. (1981). Normal and abnormal signal patterns in nerve cells. In: Mathematical Psychology and Psychophysiology. S. Grossberg, ed. SIAM-AMS. Proceedings. 13, 49–90. American Mathematical Society. Providence, RI.Google Scholar
  21. 20.
    Chay, T.R. (1983). Eyring rate theory in excitable membranes. Application to neuronal oscillations. J. phys. Chem. 87, 2935–2940.CrossRefGoogle Scholar
  22. 21.
    Chay, T.R. (1984). Abnormal discharges and chaos in a neuronal model system. Biol. Cybernetics. 50, 301–311.MATHCrossRefGoogle Scholar
  23. 22.
    Chay, T.R. and Lee, Y.S. (1984). Impulse responses of automaticity in the Purkinje fiber. Biophys. J. 45, 841–849.Google Scholar
  24. 23.
    Cohen, A. and Procaccia, I. (1985). Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A. 31A, 1872–1882.CrossRefGoogle Scholar
  25. 24.
    Cohen, R.J. and Berger, R.D. (1983). A quantitative model for verticular response during atrial fibrillation. IEEE Trans. Biomed. BME30, 769–781.CrossRefGoogle Scholar
  26. 25.
    Colding-Jorgensen M. (1983). A model for the firing pattern of a paced nerve cell. J. theor. Biol. 101, 541–569.CrossRefGoogle Scholar
  27. 26.
    Davis, P. and Ikeda, K. (1984). T3 in a model of a nonlinear optical resonator. Phys. Lett. Series A. 100A, 455–459.CrossRefGoogle Scholar
  28. 27.
    Eckmann, J.-P. (1981). Roads to turbulence in dissipative dynamical systems. Rev. modn. Phys. 53, 643–654.MATHMathSciNetCrossRefGoogle Scholar
  29. 28.
    Ermentrout, G.B. (1984). Period doublings and possible chaos in neural models. SIAM J. appl. Maths. 44, 80–95.MATHMathSciNetCrossRefGoogle Scholar
  30. 29.
    Farmer, J.D. (1982a). Dimension, fractal measures and chaotic dynamics. In: Evolution of Order and Chaos. H. Haken, ed. pp. 228–246. Springer Verlag, Berlin.CrossRefGoogle Scholar
  31. 30.
    Farmer, J.D. (1982b). Information dimension and the probabilistic structure of chaos. Z. Naturforsch. 37a, 1304–1325.MathSciNetGoogle Scholar
  32. 31.
    Farmer, J.D. (1982c). Chaotic attractors of an infinite dimensional dynamical system. Physica. 4D, 366–393.MathSciNetGoogle Scholar
  33. 32.
    Federer, H. (1969). Geometric Measure Theory. Springer Verlag, Berlin.MATHGoogle Scholar
  34. 33.
    Frederickson, P., Kaplan, J., Yorke, E. and Yorke, J. (1982). The Liapunov dimension of strange attractors. J. diff. Eqn. 49, 185–207.MathSciNetCrossRefGoogle Scholar
  35. 34.
    Froehling, H., Crutchfield, J.P., Farmer, D., Packard, N.H. and Shaw, R. (1981). On determining the dimension of chaotic flows. Physica. 3D, 605–617.MathSciNetGoogle Scholar
  36. 35.
    Gelb, A. and Vander Veld, W. (1968). Multiple Input Describing Functions and Control System Design. McGraw Hill, NY.Google Scholar
  37. 35.
    Gibson, G. and Jeffries, C. (1841). Observation of period doubling and chaos in spin wave instabilities in yttrium iron garnet. Phys. Rev. Series A. 29A, 811–818.Google Scholar
  38. 37.
    Glass, L., Graves, C., Petrillo, G.A. and Mackey, M.C. (1980). Unstable dynamics of a periodically driven oscillator in the presence of noise. J. theor. Biol. 86, 455–476.MathSciNetCrossRefGoogle Scholar
  39. 33.
    Glass, L., Guevara, M.R., Shrier, A. and Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica. 70, 89–101.Google Scholar
  40. 39.
    Glass, L. and Mackey, M.C. (1979). Pathological conditions resulting from instabilities in physiological control systems. Ann. N.Y. Acad. Sci. 316, 214–235.CrossRefGoogle Scholar
  41. 40.
    Gollubj J.P. and Benson, S.V. (1980). Many routes to turbulent convection. J. fluid Mech. 100, 449–470.CrossRefGoogle Scholar
  42. 41.
    Gollub, J.P., Romer, E.G. and Socolar, J.E. (1980). Trajectory divergence for coupled relaxation oscillators: Measurements and models. J. stat. Phys. 23, 321–333.MathSciNetCrossRefGoogle Scholar
  43. 42.
    Gorman, M., Reith, L.A. and Swinney, H.L. (1980). Modulation patterns, multiple frequencies and other phenomena in circular Couette flow. Ann. N.Y. Acad. Sci. 357, 10–21.CrossRefGoogle Scholar
  44. 43.
    Grassberger, P. (1981). On the Haussdorff dimension of fractal attractors. J. stat. Phys. 26, 173–179.MathSciNetCrossRefGoogle Scholar
  45. 44.
    Grassberger, P. (1983). Generalized dimensions of strange attractors. Phys. Lett. 97A, 227–230.MathSciNetGoogle Scholar
  46. 45.
    Grassberger, P. (1985). Information flow and maximum entropy measures for 1-D maps. Physica. 14D, 365–373.MathSciNetGoogle Scholar
  47. 46.
    Grassberger, P. and Procaccia I. (1983a). Measuring the strangeness of strange attractors. Physica. 9D, 189–208.MathSciNetGoogle Scholar
  48. 47.
    Grassberger, P. and Procaccia, I. (1983b). Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349.MathSciNetCrossRefGoogle Scholar
  49. 48.
    Grassberger, P. and Procaccia, I. (1983c). Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A. 28A, 2591–2593.CrossRefGoogle Scholar
  50. 49.
    Grassberger, P. and Procaccia, I. (1984). Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica. 13D, 34–54.MathSciNetGoogle Scholar
  51. 50.
    Greenside, H.S., Wolf, A., Swift, J. and Pignataro, T. (1982). Impracticality of a box counting algorithm for calculating the dimensionality of strange attractors. Phys. Rev. 25A, 3453–3456.MathSciNetGoogle Scholar
  52. 51.
    Guevara, M.R., Glass, L. and Shrier, A. (1981), Phase locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science, Wash. 214, 1350–1353.CrossRefGoogle Scholar
  53. 52.
    Guevara, M.R. and Glass, L. (1982). Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. math. Biol. 14, 1–24.MATHMathSciNetCrossRefGoogle Scholar
  54. 53.
    Guckenheimer, J. (1982). Noise in chaotic systems. Nature, Lond. 298, 358–361.CrossRefGoogle Scholar
  55. 54.
    Guckenheimer, J. (1984). Dimension estimates for attractors. Contemp. Maths. 28, 357–367.MathSciNetGoogle Scholar
  56. 55.
    Guevara, M.R., Glass, L., Mackey, M.C. and Shrier, A. (1983). Chaos in neurobiology. IEEE Trans. Systems, Man and Cybernetics. SMC-13, 790–798.Google Scholar
  57. 56.
    Hausdorff, F. (1918). Dimension und äusseres Mass. Math. Annalen. 79, 157–179.MATHMathSciNetCrossRefGoogle Scholar
  58. 57.
    Hayashi, H., Ishizuka, S. and Hirakawa, K. (1983). Transition to chaos via intermittency in the Onchidium pacemaker neuron. Phys. Lett A. 98A, 474–476.CrossRefGoogle Scholar
  59. 58.
    Hayashi, H., Ishizaka, S., Ohta, M. and Hirakawa, K. (1982). Chaotic behavior in the Onchidium giant neuron under sinusoidal stimulation. Phys. Lett. 88A, 435–438.Google Scholar
  60. 59.
    Hindmarsh, J.L. and Rose, R.M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. 221B, 87–102.CrossRefGoogle Scholar
  61. 60.
    Holden, A.V., ed. (1985). Chaos. An Introduction. Manchester University Press, Manchester, UK, in press.Google Scholar
  62. 61.
    Holden, A.V. and Ramadan, S.M. (1981). The response of a molluscan neurone to a cyclic input: Entrainment and phase locking. Biol. Cybernetics. 41, 157–163.MathSciNetCrossRefGoogle Scholar
  63. 62.
    Holden, A.V., Winlow, W. and Haydon, P.G. (1982). The induction of periodic and chaotic activity in a molluscan neurone. Biol. Cybernetics. 43, 169–173.MathSciNetCrossRefGoogle Scholar
  64. 63.
    Holden, A.V. and Ramadan, S.M. (1981). The response of a molluscan neuron to a cyclic input: Entrainment and phase locking. Biol. Cybern. 43, 157–163.MathSciNetCrossRefGoogle Scholar
  65. 64.
    Hurewicz, W. and Wallman, H. (1941). Dimension Theory. Princeton University Press, Princeton, NJ.Google Scholar
  66. 65.
    Iooss, G., Helleman, R.H.G. and Stora, R. (1983). Chaotic Behaviour of Deterministic Systems. North-Holland Publishing, Amsterdam.MATHGoogle Scholar
  67. 66.
    Itil, T.M. (1977). Qualitative and quantitative EEG findings in schizophrenia. Schizophrenia Bulletin. 3, 61–79.Google Scholar
  68. 67.
    Keener, J.P. (1981a). Chaotic cardiac dynamics. In: Mathematical Aspects of Physiology. F.C. Hoppensteadt, ed. pp. 299–325. American Mathematical Society, Providence, RI.Google Scholar
  69. 68.
    Keener, J.P. (1931b). On cardiac arrhythmias: AV conduction block. J. math. Biol. 12, 215–225.MathSciNetCrossRefGoogle Scholar
  70. 69.
    Jensen, J.H., Christiansen, P.L., Scott, A.C. and Skovgaard, O. (1983). Chaos in nerve, preprint. Technical University of Denmark.Google Scholar
  71. 70.
    Kaczmarek, L.K. (1976). A model of cell firing patterns during epileptic seizures. Biol. Cybernetics. 22, 229–234.MATHCrossRefGoogle Scholar
  72. 71.
    Kaczmarek, L.K. and. Babloyantz, A. (1977). Spatiotemporal patterns in epileptic seizures. Biol. Cybernetics. 26, 199–208.MATHCrossRefGoogle Scholar
  73. 72.
    Kaplan, J.C. and Yorke, J.A. (1979). Chaotic behavior of multidimensional difference equations. In: Functional Differential Equations and Approximations of Fixed Points. H.O. Peitgen and H.O. Walther, eds. Lecture Notes in Mathematics. Volume 730. Springer, Berlin.Google Scholar
  74. 73.
    King, R., Barchas, J.D. and Huberman, B.A. (1984). Chaotic behavior in dopamine neurodynamics. Proc. natn. Acad. Sci. U.S.A. 81, 1244–1247.CrossRefGoogle Scholar
  75. 74.
    Kolata, G. (1984). Order out of chaos in computers. Science, Wash. 223, 917–919.CrossRefGoogle Scholar
  76. 75.
    Kolmogorov, A.N. (1958). A metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Acad. Nauk USSR. 119, 861–864. (English summary: Math. Rev. 21, 386.)MATHMathSciNetGoogle Scholar
  77. 76.
    Kolmogorov, A.N. (1959). Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk USSR. 124, 754–755. (English summary: Math. Rev. 21, 386.)MATHMathSciNetGoogle Scholar
  78. 77.
    Kloeden, P., Deakin, M.A.B. and Tirkel, A.Z. (1976). A precise definition of chaos. Nature, Lond. 264, 295.CrossRefGoogle Scholar
  79. 78.
    Ktonas, P.Y. (1983). Automated analysis of abnormal electroencephalograms. CRC Critical Reviews of Biomedical Engineering. 9, 39–97.Google Scholar
  80. 79.
    Landau, L.D. (1944). Dkl. Acad. Sci. USSR. 44, 311.MATHGoogle Scholar
  81. 80.
    Landau, L.D. and Lifshitz, E.M. (1959). Fluid Mechanics. Pergamon, NY. (Section 27).Google Scholar
  82. 81.
    Libchaber, A. (1983). Experimental aspects of the period doubling scenario. Lect. Notes Phys. 179, 157–164.CrossRefGoogle Scholar
  83. 82.
    Libchaber, A., Fauve, S. and Laroche, C. (1983). Two parameter study of the routes to chaos. Physica. 7D, 73–84.Google Scholar
  84. 83.
    Lundy, M. and Mees, A.I. (1984). Convergence of the annealing algorithm. Math. Program, in press.Google Scholar
  85. 84.
    Mackey, M.C. (1979). Periodic autoimmune hemolytic anemia: An induced dynamical disease. Bull. math. Biol. 41, 829–834.MATHMathSciNetGoogle Scholar
  86. 85.
    Mackey, M.C. (1981a). Some models in hemopoiesis: Predictions and problems. In: Biomathematics in Cell Kinetics. M. Rotenberg, ed. pp. 23–38. Elsevier, Amsterdam.Google Scholar
  87. 86.
    Mackey, M.C. (1981b). Unravelling the connection between human hematopoietic cell proliferation and maturation. In: Regulation of Reproduction and Aging. E.V. Jensen and J.G. Vassileva-Popova, eds. Plenum Press, NY.Google Scholar
  88. 87.
    Mackey, M.C. (1985). A mitotic oscillator with a strange attractor and distribution of cell cycle times. In: Nonlinear Oscillations in Chemistry and Biology. H.G. Othmer, ed. Springer Verlag, NY.Google Scholar
  89. 88.
    Mackey, M.C. and van der Heiden, U. (1983). The dynamics of recurrent inhibition. J. math. Biol. 22, 211–225.Google Scholar
  90. 89.
    Mackey, M.C. and Dormer, P. (1981). Enigmatic hemopoiesis. In: Biomathematics and Cell Kinetics. M. Rotenberg, ed. pp. 87–103. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  91. 90.
    Mackey, M.C. and Glass, L. (1977). Oscillations and chaos in physiological control systems. Science, Wash. 197, 287–289.CrossRefGoogle Scholar
  92. 91.
    Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Revised Edition. W.H.Freeman, San Francisco.Google Scholar
  93. 92.
    Martin, J.H. (1981). Somatic sensory system. II. Anatomical substrates for somatic sensation. In: Principles of Neural Science. E.R. Kandel and J.H. Schwartz, eds. pp. 170–183. Elsevier, North-Holland, NY.Google Scholar
  94. 93.
    Matsumoto, G., Aihara, K., Ichikawa, M. and Tasaki, A. (1983). Periodic and nonperiodic responses of membrane potential in squid giant axons under firing to sinusoidal current stimulation. J. theor. Neurobiol. 3, 1–14.Google Scholar
  95. 94.
    Mees, A.I. and Sparrow, C.T. (181). Chaos. IEE Proc. 128D, 201–205.Google Scholar
  96. 95.
    Mori, H. (1980). Fractal dimensions of chaotic flows of autonomous dissipative systems. Prog, theor. Phys. 68, 1044–1047.CrossRefGoogle Scholar
  97. 96.
    Nemytskii, V.V. and Stepanov, V.V. (1960). Qualitative Theory of Differential Equations. Princeton University Pres, Princeton, NJ.MATHGoogle Scholar
  98. 97.
    Newhouse, S., Ruelle, D. and Takens, F. (1978). Occurrence of strange axiom A attractors near quasi-periodic flows on Tm, m ≥ 3. Commun, math. Phys. 64, 35–40.MATHMathSciNetCrossRefGoogle Scholar
  99. 98.
    Nicolis, C. and Nicolis, G. (1984). Is there a climatic attractor? Nature, Lond. 311, 529–532.CrossRefGoogle Scholar
  100. 99.
    Ott, E., Yorke, E.D. and Yorke, J.A. (1985). A scaling law: How an attractor’s volume depends on noise level. Physica. 16D, 62–78.MathSciNetGoogle Scholar
  101. 100.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. (1980). Geometry from a time series. Phys. Rev. Lett. 45, 712–716.CrossRefGoogle Scholar
  102. 101.
    Pinneo, L.R. (1968). Brain mechanisms in the behavior of the squirrel monkey. In: The Squirrel Monkey. L.A. Rosenblum and R.W. Cooper, eds. pp. 319–346. Academic Press, NY.Google Scholar
  103. 102.
    Principe, J.C. and Smith, J.R. (1982). Microcomputer-based system for the detection and quantification of petit mal epilepsy. Comput. Biol. Med. 12, 87–95.CrossRefGoogle Scholar
  104. 103.
    Rapp, P.E. (1975). A theoretical investigation of a large class of biochemical oscillators. Math. Biosci. 25, 165–188.MATHMathSciNetCrossRefGoogle Scholar
  105. 104.
    Rapp, P.E. (1985a). Oscillations and chaos in cellular metabolism and physiological systems. In: Chaos, An Introduction. A.V. Holden, ed. Manchester University Press, UK, in press.Google Scholar
  106. 105.
    Rapp, P.E. (1985b). Reliability in high density hierarchical devices: Possible lessons from neural systems. In: Molecular Electronic Devices. F.L. Carter, ed. Marcel Dekker, NY in press.Google Scholar
  107. 106.
    Rapp, P.E., Zimmerman, I.D., Albano, A.M., deGuzman, G.C. and Greenbaun, N.N. (1985). Dynamics of spontaneous neural activity in the simian motor cortex: The dimension of chaotic neurons. Phys. Lett, in press.Google Scholar
  108. 107.
    Renyi, A. (1959). On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungar. 10, 193–215. (English translation: Selected Papers of A.Renyi. 2, 320–342, Akademiai, Budapest).MATHMathSciNetCrossRefGoogle Scholar
  109. 108.
    Ritzenberg, A.L., Adam, D.R. and Cohen, R.J. (1984). Period multiplying: Evidence for nonlinear behavior in the canine heart. Nature, Lond. 307 159–161.CrossRefGoogle Scholar
  110. 109.
    Ritzenberg, A.L., Smith, J.M., Grumbach, M.P. and Cohen, R.J. (1984b). Precursor to fibrillation in cardiac computer model. In: Computers in Cardiology. IEEE, Silver Spring, MD.Google Scholar
  111. 110.
    Ruelle, D. (1981a). Differentiable dynamical systems and the problem of turbulence. Bull. (New Series) Am. math. Soc. 5, 29–42.MATHMathSciNetCrossRefGoogle Scholar
  112. 111.
    Ruelle, D. (1981b). Small random perturbations of dynamical systems and the definition of attractors. Commun, math. Phys. 82, 137–151.MATHMathSciNetCrossRefGoogle Scholar
  113. 112.
    Ruelle, D. and Takens, F. (1971). On the nature of turbulence. Commun. math. Phys. 20, 167–192.MATHMathSciNetCrossRefGoogle Scholar
  114. 113.
    Russell, D.A., Hanson, J.D. and Ott, E. (1980). Dimension of strange attractors. Phys Rev. Lett. 45, 1175–1178.MathSciNetCrossRefGoogle Scholar
  115. 114.
    Sbitnev, V.I. (1978). Transport of spikes in statistical neuron ensembles. IVa. The starting of the problem in a diffusion approximation. Biofizika. 23, 508–513. (translation: Biophysics. 23, 514–520.)Google Scholar
  116. 115.
    Sbitnev, V.I. (1979). Transport of spikes in statistical neuron ensembles. An induced epileptic focus in the model of field CA3 of the hippocampus. Biofizika. 24, 141–147. (translation: Biophysics. 24, 141–147).Google Scholar
  117. 116.
    Sbitnev V.I. (1984). Model patterns of stochastic variations of postsynaptic activity. Biofizika. 29, 113–116. (translation: Biophysics. 29, 121–125.)Google Scholar
  118. 117.
    Schuster, H.G. (1984). Deterministic Chaos: An Introduction. VCH Publishers, Dearfield Beach, FL.MATHGoogle Scholar
  119. 118.
    Sejnowski, T.J. and Hinton, G.E. (1985). Parallel stochastic search in early vision. In: Vision, Brain and Cooperative Computation. M. Arbib and A.R. Hanson, eds.Google Scholar
  120. 119.
    Shaw, R. (1981). Strange attractors, chaotic behavior and information flow. Z. Naturforsch. 36A, 80–112.Google Scholar
  121. 120.
    Siegel, A., Grady, C.L. and Mirsky, A.F. (1982). Prediction of spike-wave bursts in absence epilepsy by EEG power-spectrum signals. Epilepsia. 23, 47–60.CrossRefGoogle Scholar
  122. 121.
    Smith, J.M. and Cohen, R.J. (1984a). Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc. natn. Acad. Sci. U.S.A. 81, 233–237.CrossRefGoogle Scholar
  123. 122.
    Smith, J.M., Ritzenberg, A.L. and Cohen, R.J. (1984b). Finite element models of cardiac dysrhythmias. In: Proceedings 1984 Symposium on Mathematics and Computers in Biomedical Applications. NIH, Washington.Google Scholar
  124. 123.
    Takens, F. (1980). Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Lecture Notes in Mathematics. Volume 898. D.A. Rand and L.S. Young, eds. pp. 365–381. Springer-Verlag, NY.Google Scholar
  125. 124.
    Towe, A.L., Patton, H.D. and Kennedy, T.T. (1964). Response properties of neurons in the pericuriate cortex of the cat following electrical stimulation of the appendages. Exptl. Neurol. 10, 325–344.CrossRefGoogle Scholar
  126. 125.
    Turner, J.S., Roux, J.C., McCormick, W.D. and Swinney, H.L. (1981). Alternating periodic and chaotic regimes in a chemical reaction: Experiment and theory. Phys. Lett. Series A. 85A, 9–12.CrossRefGoogle Scholar
  127. 126.
    Welker, W.I., Benjamin, R.M., Miles, R.C. and Woolsey, C.N. (1957). Motor effects of stimulation of the cerebral cortex of squirrel monkey (Saimiri sciureus). J. Neurophysiol. 20, 347–364.Google Scholar
  128. 127.
    Whitney, H. (1936). Ann. Math. 37, 645.MathSciNetCrossRefGoogle Scholar
  129. 128.
    Zimmerman, I.D. and Kreisman, N.R. (1970). Somatosensory cortical unit responses of long duration. Nature, Lond. 227, 1361–1363.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. E. Rapp
    • 1
  • I. D. Zimmerman
    • 1
  • A. M. Albano
    • 2
  • G. C. deGuzman
    • 2
  • N. N. Greenbaun
    • 3
  • T. R. Bashore
    • 4
  1. 1.Department of Physiology and BiochemistryThe Medical College of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PhysicsBryn Mawr CollegeBryn MawrUSA
  3. 3.Department of Mathematical SciencesTrenton State CollegeTrentonUSA
  4. 4.Department of Psychiatry, The Medical College of PennsylvaniaThe Eastern Pennsylvania Psychiatric InstitutePhiladelphiaUSA

Personalised recommendations