Aerogels pp 104-109 | Cite as

Thermal Conductivity of SiO2-Aerogel Tiles

  • D. Büttner
  • R. Caps
  • U. Heinemann
  • E. Hümmer
  • A. Kadur
  • P. Scheuerpflug
  • J. Fricke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 6)

Abstract

The production of highly transparent silica aerogel tiles has been strongly motivated by high-energy physicists who wanted to use this material with low index of refraction in Cerencov counters [1]. Today tiles of excellent optical quality with densities between about 75 and 300 g/l corresponding to indices of refraction between 1.015 and 1.060 and with sizes of 20 × 20 cm2 are available [2]. Though these tiles might also have a potential as transparent superinsulating spacers in window systems in the future [3],right now we consider them primarily as indispensable systems for investigations of the thermal transport in highly porous monolithic materials, which allow the optimization of cheaper granular aerogel fillings.

Keywords

Porosity Refraction Flange Emissivity Percolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Poelz, “Aerogel Cerenkov Counters at DESY”, DESY-Report 84–110 (1984) and references thereinGoogle Scholar
  2. 2.
    S. Henning and L. Svensson, Physica Scripta 23, 697 (1981)CrossRefADSGoogle Scholar
  3. 3.
    G. v. Dardel, S. Henning and L. Svensson, European Patent Specification 0018955 Bl, date of filing 17.04.80, date of publication 01. 12. 82Google Scholar
  4. 4.
    R. Caps and J. Fricke, “Radiative Heat Transfer in Highly Transparent Silica Aerogel”, Report E12-1283-1 (1983), Phys. Inst, der Universität, D-8700 Würzburg and Int. J. Solar Energy 3, 13 (1984)CrossRefGoogle Scholar
  5. 5.
    D. Deptuck, J. P. Harrison and P. Zawadzki, Phys. Rev. Letters 54, 913 (1985)CrossRefADSGoogle Scholar
  6. 6.
    D. Büttner and J. Fricke, “Thermal Conductivity of Evacuated Highly Transparent Silica Aerogel”, Report E12-0784-1 (1984), Phys. Inst, der Universität, D-8700 Würzburg and Int. J. Solar Energy 3, 89 (1985)CrossRefGoogle Scholar
  7. 7.
    P. Scheuerpflug, R. Caps, D. Büttner and J. Fricke, “Apparent Thermal Conductivity of Evacuated SiO2 Aerogel Tiles Under Variation of Radiative Boundary Conditions”, Report E12-1284-1 (1984), accepted for publication in Int. J. Heat Mass TransferGoogle Scholar
  8. 8.
    P. Scheuerpflug, Diplom Thesis, University of Würzburg, 1985 (unpublished)Google Scholar
  9. 9.
    K. H. Bode, Int. J. Heat Mass Transfer 23, 961 (1980)CrossRefGoogle Scholar
  10. 10.
    D. Büttner, J. Fricke and H. Reiss, Vakuum-Technik 34, 3 (1985)Google Scholar
  11. 11.
    D. Büttner, J. Fricke and H. Reiss, “Thermal Conductivity of Evacuated Load Bearing Powder and Fiber Insulations Under Variable External Load”, High Temp.-High Pressure 17, in print (1985)Google Scholar
  12. 12.
    F. de Ponte, private communication and J. Thermal Insulation 84, 94 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. Büttner
    • 1
  • R. Caps
    • 1
  • U. Heinemann
    • 1
  • E. Hümmer
    • 1
  • A. Kadur
    • 1
  • P. Scheuerpflug
    • 1
  • J. Fricke
    • 1
  1. 1.Physikalisches Institut der UniversitätWürzburgGermany

Personalised recommendations