Fingering Patterns in Hele-Shaw Flow

  • J. V. Maher
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 5)


The formation of fingers through the Saffman-Taylor instability in Hele-Shaw flow presents one of the simplest of pattern formation problems. The flow is governed by the Poisson equation, and thus should have a close formal connection[1,2] through its similarity to the random walk problem to diffusion-limited aggregation (DLA)[3]. This poses the fascinating simulation problem of how much and which physical properties must be added to the essentially fractal DLA problem to mock up the interfacial conditions which produce the smooth fingering patterns seen in the Saffman-Taylor flow [4,5,6]. The experimental work I will present in this paper[7] exploits the well-established critical properties of binary mixtures to vary the crucial viscosity contrast parameter more precisely and over a greater range than ever before. In addition, the temporal development of the non-linear pattern is determined more accurately than in most earlier work.


Taylor Instability Isobutyric Acid Binary Liquid Mixture Viscosity Contrast Binary Liquid System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Paterson, Phys. Rev. Lett. 52, 1625 (1984).CrossRefADSGoogle Scholar
  2. 2.
    L.P. Kadanoff, J. Stat. Phys, in press. C. Tang, Phys. Rev. A 31, 1977 (1985).CrossRefGoogle Scholar
  3. 3.
    T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1499 (1981).CrossRefGoogle Scholar
  4. 4.
    S. Liang and L.P. Kadanoff, Phys. Rev. A 31, 2628 (1985).CrossRefADSGoogle Scholar
  5. 5.
    T. Vicsek, Phys. Rev. Lett. 53, 2281 (1984).CrossRefADSGoogle Scholar
  6. 6.
    D. Jasnow, private communication.Google Scholar
  7. 7.
    JoV. Maher, Phys. Rev. Lett. 54, 1498 (1985).CrossRefADSGoogle Scholar
  8. 8.
    S. Hill, Chem. Eng. Sci 1, 247 (1952).CrossRefGoogle Scholar
  9. 9.
    P.G. Saffman and G.I. Taylor, Proc. Roy. Soc. London A245, 312 (1958).ADSMathSciNetGoogle Scholar
  10. 10.
    D. Wilkinson, paper presented at this conference.Google Scholar
  11. 11.
    R.L. Chuoke, P. van Meurs and C. van der Poel, J. Petrol. Tech. 11, 64 (.1959).Google Scholar
  12. 12.
    R.A. Wooding and H.J. Morel-Seytoux, Ann. Rev. Fluid Mech. 8, 233 (1976); and references therein.CrossRefADSGoogle Scholar
  13. 13.
    J.W. McLean and P.G. Saffman, J. Fluid Mech 102, 455 (1981).CrossRefMATHADSGoogle Scholar
  14. 14.
    G. Tryggvason and H. Aref, J. Fluid Mech 136, 1 (1983), and preprint.CrossRefMATHADSGoogle Scholar
  15. 15.
    C.-W. Park, S. Gorell and G. M. Homsy, J. Fluid Mech 141, 275 (1984)CrossRefADSGoogle Scholar
  16. 15a.
    I. White, P.M. Colombera and J.R. Philip, Soil Sci. Soc. Am. J. 41, 483 (1977).CrossRefGoogle Scholar
  17. 16.
    B. Chu, F.J. Schoenes and W.P. Kao, J. Am. Chem. Soc. 90, 3042 (1968).CrossRefGoogle Scholar
  18. 17.
    C.-W. Park and G. M. Homsy, Bull. Am. Phys. Soc. 29, 1337 (1984).Google Scholar
  19. 17.
    C.-W. Park and G. M. Homsy, J. Fluid Mech 139, 291 (1984).CrossRefMATHADSGoogle Scholar
  20. 18.
    J. Nittmann, G. Daccord and H.E. Stanley, Nature (London) 314, 141 (1985).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. V. Maher
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburqhPittsburghUSA

Personalised recommendations