Nonlinear Problems in Stellar Dynamics

  • G. Contopoulos
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 3)

Abstract

We deal with orbits of stars in galaxies (1) on the plane of symmetry of a spiral galaxy (2) on the meridian plane of an axisymmetric galaxy and (3) three-dimensional orbits in non-axisymmetric galaxies. The theory of the “third integral” explains the ordered motions- However, there are also stochastic motions that play an important role near resonances. The transition to stochasticity is studied. Finally some new types of phenomena that appear in 3-dimensional systems are discussed.

Keywords

Azimuth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Lin and F.H. Shu: Astrophys. J. 140, 646 (1964)MathSciNetADSCrossRefGoogle Scholar
  2. 1a.
    C.C. Lin and Y.Y. Lau: Stud. Appl. Math. 60, 97(1979).MathSciNetADSGoogle Scholar
  3. 2.
    A.J. Kalnajs: Astrophys. J. 166, 275 (1971).MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    A. Toomre, in S.M. Fall and D. Lynden-Bell (eds.): The structure and evolution of normal galaxies (Cambridge Univ. Press, Cambridge 1981), p. 113.Google Scholar
  5. 4.
    G. Contopoulos: Astrophys. J. 201, 566 (1979).MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    G. Contopoulos: Astron. Astrophys. 64, 323 (1978).ADSMATHGoogle Scholar
  7. 6.
    G. Contopoulos: Z. f. Astrophysik 49, 27 (1960).MathSciNetGoogle Scholar
  8. 7.
    G. Contopoulos and M. Moutsoulas: Astron. J. 70, 817 (1965).ADSCrossRefGoogle Scholar
  9. 8.
    F.G. Gustavson: Astron. J. 71, 670 (1966).ADSCrossRefGoogle Scholar
  10. 9.
    M.N. Rosenbluth, R.A. Sagdeev, J.B Taylor and M. Zaslavskii: Fuel. Fusion 6, 297 (1966).Google Scholar
  11. 10.
    G. Contopoulos, in F. Nahon and M. Hénon (eds.): Les nouvelles méthodes de Google Scholar
  12. la dynamique stellaire (CNRS, Paris, 1966) ≡ Bull. Astron., Ser. 3, 2, Fasc. 1, 223 (1967).Google Scholar
  13. 11.
    B.V. Chirikov: Phys. Rep. 52, 263 (1969)MathSciNetADSCrossRefGoogle Scholar
  14. 11a.
    M. Zaslavskii and B.V. Chirikov: Sov. Phys. Uspekhi 14, 549 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 12.
    J.M. Greene: J. Math. Phys. 20, 1183 (1979).ADSCrossRefGoogle Scholar
  16. 13.
    R.S. MacKay:, Ph.D. Thesis, Princeton University (1982).Google Scholar
  17. 14.
    S.J. Shenker and L.P. Kadanoff: J. Stat. Phys. 27, 631 (1982).MathSciNetADSCrossRefGoogle Scholar
  18. 15.
    M.J. Feigenbaum: J. Stat. Phys. 19, 25 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 16.
    P. Coullet and C. Tresser: J. Phys. C 5, 25 (1978).Google Scholar
  20. 17.
    G. Benettin, C. Cercignani, L. Galgani and A. Giorgilli: Lett. Nuovo Cim. 28, 1 (1980).CrossRefGoogle Scholar
  21. 18.
    J.M. Greene, R.S MacKay, F. Vivaldi and M.J. Feigenbaum: Physica D 3 468 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 19.
    T. Bountis: Physica D 3, 577 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 20.
    G. Contopoulos: Physica D 8, 142 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 21.
    G. Contopoulos: Lett. Nuovo Cim. 38, 257 (1983).MathSciNetCrossRefGoogle Scholar
  25. 22.
    G. Contopoulos: Astron. J. 75, 96; 108 (1970).MathSciNetADSCrossRefGoogle Scholar
  26. 23.
    G. Contopoulos and M. Zikides: Astron. Astrophys. 90, 198 (1980).MathSciNetADSGoogle Scholar
  27. 24.
    D.S. Heggie: Celes. Mech. 29, 207 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 25.
    R.M. May: Nature 261, 257 (1976).CrossRefGoogle Scholar
  29. 26.
    M. Widom and L.P. Kadanoff: Physica D 5, 287 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 27.
    V.I. Arnold and A. Avez: Ergodic problems of classical mechanics (Benjamin, N. York 1968).Google Scholar
  31. 28.
    N.N. Nekhoroshev: Russian Math. Surveys 32, 6, 1 (1977).ADSMATHCrossRefGoogle Scholar
  32. 29.
    G. Contopoulos, L. Galgani and A. Giorgilli: Phys. Rev. A 18, 1183 (1978).ADSCrossRefGoogle Scholar

The above list is quite incomplete. Important books containing also many references are

  1. V.I. Arnold: 1979, Mathematical methods of classical mechanics, Springer Verlag, New York.Google Scholar
  2. R.H.G. Helleman (ed.): 1980, Nonlinear dynamics, Ann. N. York Acad. Sci. 357, New York.Google Scholar
  3. S. Jorna (ed.): 1978, Topics in nonlinear dynamics, Amer. Inst. Phys. 46, New York.Google Scholar
  4. A.J. Lichtenberg and M.A. Lieberman: 1983, Regular and stochastic motion, Springer Verlag, New York.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Contopoulos
    • 1
  1. 1.European Southern ObservatoryGarching bei MünchenFed. Rep. of Germany

Personalised recommendations