Skip to main content

Stationary Distributions for Populations Subject to Random Catastrophes

  • Conference paper
  • 481 Accesses

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 57))

Abstract

Let X(t) denote the size of a certain population at time t **2267 0. It is assumed that at times when no catastrophes occur, the population grows according to the differential equation

$$ X'(t)=\alpha(X(t))$$
((1))

. The hazard function for the occurrence of a catastrophe is β(X(t)), i.e.

$$\Pr\{no catastrophe occurs in the interval({T_{1}},{T_{2}})\}=\exp(-\int\limits_{{{T_{2}}}}^{{{T_{1}}}}{\beta(X(s))ds)}$$
((2))

. If a catastrophe or downward jump takes place at time T, then it is assumed that

$$\Pr\{X(T)\leqq y|X(T-)=x\}=h(x,y)$$
((3))

, where h is a given function. The problem will be to study the distribution of X(t), especially as t → ∞.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Brockwell, J.M. Gani and S.I. Resnick, Birth, immigration and catastrophe processes, Adv. in Appl. Probab. 14 (1982), 709 – 731.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.J. Brockwell, J.M. Gani and S.I. Resnick, Catastrophe processes with continuous state space, Austral. J. Statist., to appear.

    Google Scholar 

  3. G. Gripenberg, A stationary distribution for the growth of a population subject to random catastrophes, J. Math. Biol., to appear.

    Google Scholar 

  4. F.B. Hanson and H.C. Tuckwell, Persistence times of populations with large random fluctuations, Theoret. Population Biol. 14 (1978), 46–61.

    Article  MathSciNet  Google Scholar 

  5. F.B. Hanson and H.C. Tuckwell, Logistic growth with random density independent disasters, Theoret. Population Biol. 19 (1981), 1 – 18.

    Article  MATH  MathSciNet  Google Scholar 

  6. A.G. Pakes, A.C. Trajstman and P.J. Brockwell, A stochastic model for a replicating population subject to mass emigration due to population pressure, Math. Biosci. 45 (1979), 137 – 157.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.C. Trajstman, A bounded growth population subjected to emigrations due to population pressure, J. Appl. Probab. 18 (1981), 571 – 582.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gripenberg, G. (1985). Stationary Distributions for Populations Subject to Random Catastrophes. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (eds) Mathematics in Biology and Medicine. Lecture Notes in Biomathematics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93287-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93287-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15200-2

  • Online ISBN: 978-3-642-93287-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics