NMR Imaging: Principles, Algorithms and Systems

  • Z. H. Cho
  • H. S. Kim
  • C. H. Oh
  • H. W. Park
  • S. W. Lee
Conference paper
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 23)

Abstract

Recently Nuclear Magnetic Resonance (NMR) became a reality and extensive research efforts are underway both at academic institutions and industrial research and development centers all over the world (1–6). It is also becoming apparent, now, that the recently obtained image quality appears to be close to X-ray CT images in resolution and superior in many other aspects, such as contrast sensitivity.

Keywords

Entropy Torque Radionuclide Posite Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lauterbur P (1973). Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242: 190.CrossRefGoogle Scholar
  2. 2.
    Damadian R (1971). Tumor detection by NMR. Science 171: 1151.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrew E, Bottomley P, Hinshaw W, Holland G and Moore W (1972). Nature 270:cover.Google Scholar
  4. 4.
    Moore W, Holland G and Kreel L (1980). The NMR CAT scanner: A new look at the brain. CT 4 (2): 1.Google Scholar
  5. 5.
    Holland G, Hawkes R and Moore W (1980). Nuclear magnetic resonance (NMR) tomography of the brain: Coronal and sagittal sections. J Comput Assist Tomogr 4: 429.PubMedCrossRefGoogle Scholar
  6. 6.
    Hounsfield G and Maudsley A (1976). Fast scan photon density imaging by NMR. J Phys E Sci Instrum 9: 271.CrossRefGoogle Scholar
  7. 7.
    Kumar A, Welti D and Ernst R (1975). NMR Fourier zeugmatography. J Mag Res 18: 69.Google Scholar
  8. 8.
    Lai C-M, House W and Lauterbur P (May 1978). Nuclear magnetic res-onance zeugmatography for medical imaging. Presented at Conference Technology for Non-invasive Monitoring of Physiological Phenomena, Section 30, IEEE and ERA Electro/78, Boston, Massachusetts.Google Scholar
  9. 9.
    Shepp L (1980). Computerized tomography and nuclear magnetic reso-nance. J Comput Assist Tomogr 4: 94.PubMedCrossRefGoogle Scholar
  10. 10.
    Cho ZH, Hilal SK, Kim HS and Song HB (1983). Computer modeling and simulation of Fourier transform NMR tomography. (In) NMR Imaging, Saunders, Philadelphia, Pennsylvania, p 453.Google Scholar
  11. 11.
    Bloch F (1946). Nuclear induction. Phys Rev 70: 460.CrossRefGoogle Scholar
  12. 12.
    Shaw D (1971). Fourier Transform NMR Spectroscopy. Elsevier, New York.Google Scholar
  13. 13.
    Farrar T and Becker E (1971). Pulse and Fourier Transform NMR. Academic Press, New York.Google Scholar
  14. 14.
    Shepp L and Logan B (1974). The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21: 21.Google Scholar
  15. 15.
    Hounsfield G, Ambrose J, Perry J, et al (1973). Computerized trans-verse axial scanning. Brit J Radiol 46: 1016.PubMedCrossRefGoogle Scholar
  16. 16.
    Cormack A (1973). Reconstruction of densities from their projec-tions, with applications in radiological physics. Phys Med Biol 18: 195.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho ZH (1974). General views on 3-D image reconstruction and com-puterized transverse axial tomography. IEEE Trans Nucl Sci NS-21: 44.Google Scholar
  18. 18.
    Brooks R and DiChiro G (1976). Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21: 689.PubMedCrossRefGoogle Scholar
  19. 19.
    Ter-Pogossian MM (1977). Basic principle of computed axial tomography. Sem Nucl Med 7: 109.CrossRefGoogle Scholar
  20. 20.
    Cho ZH, Chan JK and Erikson L (1976). Circular ring transverse axial positron camera for 3-D reconstruction of radionuclides distribution. IEEE Trans Nucl Sci NS-23: 613.CrossRefGoogle Scholar
  21. 21.
    Ramachandran G and Lakshiminarayanan A (1971). Three-dimensional reconstruction from radiographs and electron micrographs. Proc Nat Acad Sci(US) 48: 2236.CrossRefGoogle Scholar
  22. 22.
    Cho ZH, Kim HS, Song HB and Cumming J (1982). Fourier transform nuclear magnetic resonance tomographic imaging. Proc IEEE 70: 1152.CrossRefGoogle Scholar
  23. 23.
    Cho ZH. Development of methods and algorithms for Fourier transform nuclear magnetic (NMR) imaging. Imaging System Science Lab, Department of Electrical Science, Korea Advanced Institute of Science, Seoul, Korea.Google Scholar
  24. 24.
    Hinshaw W and Lent A (1983). An introduction to NMR imaging: From the Bloch equation to the imaging equation. Proc IEEE 71: 338.CrossRefGoogle Scholar
  25. 25.
    Hoult DI (1979). The solution of Bloch equations in the presence of a varying RF field - An approach to selective pulse analysis. J Magn Res 35: 69.Google Scholar
  26. 26.
    Sutherland R and Hutchison J (1978). Three-dimensional NMR imaging using selective excitation. J Phys E Sci Instrum 11: 1979.CrossRefGoogle Scholar
  27. 27.
    Oh CH, Kim HS, Park HW, Kim WS, Lee SW and Cho ZH (June 1983). Study of RF, gradient pulse and magnet instability effect in NMR tomography. IEEE Trans Nucl Sci NS-30: 1899–1904.CrossRefGoogle Scholar
  28. 28.
    Cho ZH, Park HW, Ph CH. To be published.Google Scholar
  29. 29.
    Marr R, Chen C-N and Lauterbur P (Feb 10–16,1980). On two approaches to 3-D reconstruction in NMR zeugmatography. (In) Proc Conf en Mathematics Aspects of Computerized Tomography (Mathematicsche Forschungsinstitute, Oberwolfach, West Germany.Google Scholar
  30. 30.
    Cho ZH and Lee SW. To be published.Google Scholar
  31. 31.
    GE NMR INTRODUCTION (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Z. H. Cho
    • 1
    • 2
  • H. S. Kim
    • 1
    • 2
  • C. H. Oh
    • 1
    • 2
  • H. W. Park
    • 1
    • 2
  • S. W. Lee
    • 1
    • 2
  1. 1.Department of Electrical SciencesKorea Advanced Institute of ScienceSeoulKorea
  2. 2.Department of RadiologyColumbia UniversityNew YorkUSA

Personalised recommendations