The Saga of “Hypervalent” Molecules

  • Nicolaos Demetrios Epiotis
Part of the Lecture Notes in Chemistry book series (LNC, volume 34)


In a previous work, we have outlined the Molecular Orbital-Valence Bond (MOVB) theory of chemical bonding, based on the core(C)-ligand(L) dissection.1 In previous chapters, we have applied this brand of theory to a variety of structural problems with the aim to demonstrate its conceptual and formal advantages over previous and current qualitative theoretical approaches to bonding. We now observe that the Core-Ligand (C-L) dissection allows a classification of molecules which contain an even number of valence electrons into four major types depending upon the presence or absence of electron pairs or holes in the core and/or ligand fragments in the perfect pairing (R) Configuration Wavefunction (CW) representing the entire system.


Lone Pair Core Excitation Linear Distortion Multicenter Bond Anti Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epiotis, N.D., Larson, J.R., Eaton, H., “Unified Valence Bond Theory of Electronic Structure” in Lecture Notes in Chemistry, Vol. 29; Springer-Verlag: New York and Berlin, 1982.Google Scholar
  2. 2. (a)
    Chen, M.M.L.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1647.CrossRefGoogle Scholar
  3. (b).
    Wolfsberg, M; Helmholtz, L. J. Chem. Phys. 1952, 20, 837.CrossRefGoogle Scholar
  4. (c).
    Hoffmann, R.; Lipscomb, W.N. J. Chem. Phys. 1962, 36, 2189.CrossRefGoogle Scholar
  5. (d).
    Hoffmann, R., J. Chem. Phys. 1963, 39, 1397.CrossRefGoogle Scholar
  6. 3.
    Callomon, J.H., Hirota, E., Kuchitsu, K., Lafferty, W.J., Maki, A.G., Pote, C.S., in Landolt-Bornstein “Numerical Data and Function Relationships in Science and Technology”, Vol. 7, New Series, “Structure Data on Free polyatomic Molecules”, K. H. Hellwege, Ed.; Springer-Verlag: West Berlin, 1976.Google Scholar
  7. 4.
    a) Schwenzer, G.M., Schaefer, III, H.F., J. Am. Chem. Soc. 1975, 97, 1393. These computations predict a C2v structure.Google Scholar
  8. b) Gleiter, R., Veillard, A., Chem. Phys. Letters 1976, 37, 33. These computations predict a C2v structure.Google Scholar
  9. 5.
    Radom, L., Schaefer, III, H.F., Aust. J. Chem. 1975, 28, 2069. These computations predict a C2v structure with one type of basis set and C2y with another.Google Scholar
  10. 6.
    Basch, H.; Moskowitz, J.W.; Hollister, C.; Hankins, D. J. Chem. Phys. 1971, 55, 1700.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Nicolaos Demetrios Epiotis
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations